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Abstract

Barker sequences are well known with good aperiodic autocorrelation, ie. Binary Barker
sequence of length L=13 {an} =(0000011001010). With the property that in-phase autocorrelation
function is maximum and out-of-phase aperiodic autocorrelation peak equal or less than 1.
It is desirable, in radar systems and many other communication applications, to make the
out-of-phase aperiodic autocorrelation function as small as possible. This paper investigates the
binary, polyphase ternary, and polyphase quaternary sequences with good correlation properties,

which satisfy the condition of Barker constraint and have the minimum out-of-phase aperiodic

autocorrelation peak by using the real-part polyphase method.

Index Terms Aperiodic autocorrelation, Complex-valued polyphase sequences, Barker Sequences,

Merit Factor.

INTRODUCTION

Sequences with good aperiodic cormela-
tion properties arc extremely useful in digital
systems and communications engineering. It is
desirable to make the out-of-phase aperiodic
aute-correlation values as small as possible and
the aperiodic autocorrelation function (ACF)

mierit factor as great as possible [1].

Because the aperiodic correlation prop-
erties of a sequence are very difficult to analyze,
only a few analytical treatments have been
published. The main method of investigation

y

is on an empirical basis via computer search

algorithms.

In this paper. computer searching has
been employed to find the best possible Binary
sequences up to length L =32, Polyphase
Ternary up to L =26, and Polyphase Quater-
nary up to L=24,

This paper will introduce the new
method on real-part polyphase temary and
quaternary seéquences, which calculate only
the real part of the comrelation instead of

considering the complex-valued correlation.
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BINARY APERIODIC CORRELATION
FUNCTION

There are two types of the aperiodic
comrelation function, aperiodic aufocorrelation
function and aperiodic crosscorrelation function.

The aperiodic crosscorrelation function between
two sequences {ar}z(aa a az...aL_l) and
{b,}=(b, b by...b,_,) of length L is defined

as

a,.4,,, 0STSL-1

b, 1-L<t<0 ()

L

where {a,} and {b,} are represented in

+1 and -1 form.

Note that the sequences here are of finite
lIength L and are not necessarily single periods
of periodic sequences of L. Egn 1 can be
defined the aperiodic autocorrelation, when

a=}. and rewritten as :

Ld-r
a4, 0Lr<L-1 3]

C(7)=

r=0
In addition, the aperiodic autocorrelation

function and aperiodic cresscorrelation function

can be defined in unnormalized mod-2 form

as :

L=1-7
C(t)= Ya ea,., 0ST<L-1 (3)
r=0
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and,
(L~i~T ’
Ya @b o 0£7<L-1
r=0
L=+t
C,p(7)=1{ Xa,.eb, 1-Ls7<0 (4)
r=0
0 lfdzL

where {a,} and {b,} are represented in

0 and 1 mod-2 form.

The aperiodic autocorrelation also can be
defined using the simple measure of agreements

and disagreements as
C.(r)=A. - D, (5)

where A_ is the number of agreements
and D_ is the number of disagreements between
the signal sequence {a,} and its shift by <

places.

Similarly, the aperiodic crosscorrelation
also can defined in simple measure agree and

disagree form as :
Cab(r)zAf_Dr! (6)

where A, is the number of agreements
and D, is the number of disagreements between
{a,} and a shift of {b,} by 7 places.

Figure 1 illustrates the aperiodic cross-
correlation of sequence A and sequence B of

period L.
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Flgure 1. The aperiodic crosscorrelation

The maximum nontrivial valye

aperiodic correlation €,  is defined by
Crax = max{C,, .C,.} N

where C,, is the maximum out-of-phase
autecorrelation value, and C,,, is the maximum

crosscorrelation value.

The Merit Factor (MF) is an indicator,
which involves the ratio of the emergy of
correlation function mainlobes to the energy of
the correlation sidelobes. For the autocorrelation
function (ACF), the mainlobe occurs at zero
shift, C,(0).

in the following equation :

The merit factor can be written

C,(0)?

mr = —SO
2. L}E‘,:IC‘,('L'){2
=

8

In radar and the other communication
applications aspire to make the nontrivial
aperiodic autocorrelation peak as small as

possible and the aperiodic ACF merit factor as

great as possible. In addition, it is also desirable
to make the nontrivial aperiodic crosscorrelation

peak as small as possible.

BARKER SEQUENCES

Let {a} = (a,, a az...af__l) be a

complex-valued sequence and {a‘r} be its
complex conjugate, it can be defined the
aperiodic ACF as :
L~l-t,

E a,.4q rtr,
r=0

C,(1)= 0<zsLl-1 (9
The sequences fall into the Barker
sequences category if their aperiodic ACF

sidelobes are equal or less than 1,
(7)<1 : (10)

Binary Barker Sequences ~

Barker sequences have very good merit
factor, which is desirable in many communi-
cation applications, such as radar systems and
spread-spectrurn - communication systems. So
far, only 7 Binary Barker sequences have been
found, as listed in Table 1. In particular, the

binary Barker sequence of length N =13

has the highest known merit factor of 14.08,

Table 1. Binary Barker Sequences

L | Binary Barker Sequence{a,}

00

001

0001

00010

0301101
0do11101101
0003011001010
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COMPLEX MEASURE ON POLYPHASE
SEQUENCES

Using the complex gth roots of unity as
unit vectors spaced uniformly round the unit
circle in the complex plane can represent the
componenis of polyphase sequences[1,3.4,5,6].
Thus, this polyphase representation gives rise
to ¢ complex quantities of the form /™7
where 0Sk=<g-1, mutvally displaced by an
angle of 27n/q. Figure 2 shows an example
of a complex cube roots of unity, which ¢ =

3 the angle between the vectors is 27 /3.

=3 ejoul +j
' B
i
Age s’
-1 +1
, [
Py
J=1
e A

Figure 2. the complex cobe roots of unity

Let z=¢/2"7, 5o the elements become
2=1z",7% .- ;71 and multiplication on
these values is equivalent to adding their

' where

exponents mod—gq. ie. 2z .z"=z
t=ros mod—g. Also, the complex conjugate
of 77 is 277, so that multiplying by the
~ complex conjugate is equivalent to subtracting
the exponents mod—q. i.e.z” =z = 7' where
t=re s mod—q. It follows that multiplication
on the roots of unity is a closed operation.
Consequently, a convenient way of representing

these polyphase sequences is provided by listing

[T 114

the sequence of integers mod-q which form the

exponents of z.

The definition of the aperiodic correla-

tion between two complex-valued ' sequences
a= {&0&1---&1.—1} and b= {Bol;,...l;L_,} of
length L, where 4, =z% and b; b, =z%. with
a; and taken as integers mod —¢, at a relative

shift of 7 places can be written as :

L—t—-

L-1-1, =« 1
Cab(f)z 2 ar'er': Enar@br-l-‘r
r=

r=0

(11}

where 5: is the complex conjugate of
B{., For aperiodic autocorrelation we have

L=t~1, .,

(1) = 8,84, (12)

r=0)

As multiplication of the roots of unity,
and addition and subtraction mod-g.are closed
operations, the correlation values are made up
from sums of the roots of unity. In both cases,
the correlation values are the sums of the
individual correlations between the complex-
valued components of a and b. The resulis of
probably come out in real values, when a and
b are in-phase, in antiphase, or orthogonal, or
come out in complex values. If the results are
in complex, taking modulus of this quantity

is the way to represent the correlation value.

A REAL MEASURE POLYPHASE
SEQUENCES

A. Concepts of a Real Measure Polyphase
Sequences

Polyphase sequences can be represented
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by using the complex gth roots of unity as unit
vectors equally displaced round the umit circle
in the complex plane. Each gth roots have
its own ¢ complex quantities of the form
e ™4 where 05k <g-1, mutually displaced
by an angle of 27/4. An example of the
complex plane for Binary, Polyphase Ternary,
and Polyphase Quaternary sequences can be

shown in Fieure 3.4 and 5.

Figure 3. Complex plane of a. Bimary Sequence

g=3 2
e

£

Figure 5. Complex plane of a. Polyphase Qualkernary Sequence

The comelation function of the complex

" polyphase sequences may contain complex

values, which are dealt with by taking their
modulus. On the other hand, the cormelation
functions of the real measure polyphase
sequences are based on the cosine of the phase
angle between components of the complex

polyphase sequences.

In this measure, the correlation between

a sequence {a,}=(ay @ ay...a;_;) of length
L and its shift by 7 places obtains from taking
only the real part of the sum of the products

a,.a,, . rather than its modulus. If &, ., is

the angle between the phases represented by the

sequence elements g, and &, then the

definition of the aperiodic autocorrelation of

a polyphase sequence {a,} can be expressed
~
as

L-1-1
% Cos(zr.r+‘r)
r=0

c(r) (13)
Consider the possible situations depicted
in Figure 6. Here @=2nk/q and @ is some
multiple of #. Thus, 4, and b, both represent
gth roots of unity and & is the angle between
them. In Figure 6a, a, and b, are in-phase
so that @ =0, also cos@ = 1. In Figure 6b,
a, and b, are in antiphase so that & = 7. also
cosd = .],
orthogonal so that Gi=7x/2, also cos@= 0.

In Figure 6c, a, and b, are

In Figure 6d, b, leads @, by @, now the
correlation can be represented in cosine of
the angle between a, and b,. The result will

come out only the real value.

A REL Asunuusin

42




Morit Factors of Complex Polyphase Sequences Based on A Real Measure of Apsriodic Autocorreiation

+H f B. Binary Sequences

In the case g=2, the square roots of

b unity, +1 and -1, are both real and the angle
-1 7 +1 @ between them is 7, 50 cos @ = +1

or -1. By using the real measure method with
_ Binary sequences, it gives the same results as
' the methods that have been mentioned in {1,2].

J (a) Therefore, the highest known merit factor

remains 14.08 of the Binary Barker sequence
length L=13,

Taking the autocorrelation sidelobe into

account can discover the maximum merit factor

that can possible be reached the upper bound.

In this binary case, each vilue of correlation,

¢(7) is formed from a sum of +1s and -1s
and so it can easily deduce the minimum
antocorrelation sidelobe values. When the
autocorrelation function of the sequences have

the even length overlap, this may yield an equal

number of +1s and -ls so that e(7) = 0 on
these occasions. On the other hand, if the
overlap has odd length, the correlation process
will always not balance. The minimum values
of correlation becomes c{r)=+l. For the
complete autocorrelation spectrum, 7 will vary
from —(L-1} to +{L-1) and so the out-of-

phase overlap will vary from 1 to L-1. For

even L, there will be /2 occasions when the
overlap is odd, and for odd L the opportunity
of the odd overlap will be (L-1)/2. By using
- Eqn 8§, the upper bound merit factor of binary’_f

sequences can be rewritten as

Figure 6. Correlation between polyphase sequence symbols. L JorLeven

a. in-phase, @ = 0 b. in antiphase, =5 MFub = L2 farLodd andq =2 (14)
¢ orthogonal, G =x/2. d.phase angle & L-1
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Figure 7 shows the upper bound merit
factor of binary sequences up to length [ =132.

90.00
20,00
a0 4
000
gmw-
40.00
30,00 |
20.00
100
200

2 4 8 8 101214181520222428283052
Lengpth

Figure 7. The upper bound merit factor of
binary sequences up to L'=32

C. Polyphase Ternary Sequences

The complex cube roots of unity are
with k = 0,1, or 2.
Therefore, ;° = ¢° = +1,z' = /2% = (1. j43) 12
and ‘52 = /™3 =(—l+ wa)lz. these three umit

vectors uniformly displaced by 27/3=120".

giVEl’l by zk ___ej2ﬂw3,

The possible angles between phase components

~of three phase sequences are shown in Table
2 and their real measure, cos¢j, also shown
in Table 3.

Table 2. The possible angle between phase

components of three phase sequences

& A B C
A 0 2zi3 | 2n/3
B | 27/3 0 2m/3
C 2rf3 | 2=/3 0

Table 3. The real measure between phase

components of three phase sequences

Cos® A B C

A +1 -172 -172
B -12 +1 -172
C -1/2 -1/2 +1

This implies that if, during correlations,
two symbols agree -their correlation is +1 and
if they disagree their correlation is -Y%. Thus,
the comelation values in the real measure
polyphase ternary case is given by :

C(r) = A -4D, (15)

where A, is the number of agreements
and D, is the number of disagreements between
the sequences and its shift by 7 places. ie. the
overlap is L-17 digits.

Now, for an over]ap of one digit the
minimum cormelation value can be - Y. For
an overlap of two digits, the minimum
correlation value can be +y2,."i.e. one agreement
and one disagreement C(7)=1-%- 14 =0,
When an overlap of three digits irmwhich there
is one agreement and two disagreements, a
minimum value for C(7)}=1-%-%=0. The
pattern of minimum values is repeated as the
overlap runs from 1 to L -1, so that the upper
bound en the merit factor for ternary sequences

can be written as

,

3L forL=0mod-3
) .

MF, = -EL—I for=lmod-3 forg=3 (16}
2
6L forL 2mod-3
l2L-

Figure 8 shows the upper bound merit

factor of polyphase ternary sequences up lo

Length L=26,

¥
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3 8 T & 11 13 18 17 109 H 23 B
Lsngh

Figure 8. The upper bound merit factor
of polyphase ferpary sequences up to La2s

D. Polyphase Quaternary Sequences

The complex fourth roots of unity are
given by z¥=¢/2™% with k = 0,1,2, or 3
and these four unit vectors mutually displaced
by #/2 = 90°. The possible angles between
phase components of four phase sequences are
shown in Table 4.and their cos@ also shown
'in Table 5.

Table 4. The possible angle between phase

components of four phase sequences

& A B C )
A 0 ml2 1 mi2
B nl2 0 2 n
C n mi2 0 nl2
D {2 7 nl2 0

Table 5: The real measure between phase

components of four phase sequences

cosd A . B C D
+1 0 -1 0

=
=]

+1 0 +1

From Table §, the minimum correlation

value can possible be zero at all out-of-phase
positions and would consequently exhibit

infinity merit factors.

EXAMPLES OF COMPUTING THE APERIODIC
CORRELATION OF POLYPHASE TERNARY
AND POLYPHASE QUATERNARY SEQUEN-
CES.

Example 1 Compute the polyphase ternary
aperiodic autocorrelation function

of the sequence {a, }=(000102).

{a,}: 0102
{a,}: 0102
@: 000000

costd: 1 11 1 1

—

C,(0)=6

{a,}: 00010 2
{a,+1}: © 1 02
@: 0 0 gy my

cos@: 1 1 - % % C)="%

{a,}: 00010 2
{a,+3}: 1 2
@ m 0 my
cos@: 1 C,(3)=0

<o
o

010 2

{a.}:

L)
L]
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t

{g,}: 0 00 10 2
‘ {an+5}': 2
@ wmy

cos@: -y : C,(5)="4%

The aperiodic autocorrelation {C,(7)} =

(6,+3,+1,0,+*%,-14)

The merit factor :

MF = 6’ —_=10.29 '
2.{}52+12+02+y22+(-y)2} {a,}:

{a” +S}:
%)

Example 2 Compute the polyphase quaternary
aperiedic autocorrelation function ‘
of the sequence {a,}={(000213). cos(d: h C,(5)=0

The aperiodic autocorretation {C,(7)} =
(6,0,0,-1,0,0)

The merit factor :

62

MF=
2.40% +0% + (1> +0% + 0

=18.00
}

BEST POSSIBLE SEQUENCES BASED
ON COMPUTER SEARCH ALGORITHM

A. Best possible Binary Sequences

By using the computer program search
the best possible binary sequences. So far, the
‘best possible binary sequences up to length

N =32, as shown in Table 6 have been found.

For binary, the sequence of length
N =13 has the highest known merit factor

ML esurusiind|
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of 1408 and its autocomelation function
{c()}=(13,0,1,0,1,0,1,0,1,0,1,0,1).

Figure 9 shows graph of Upper bound
Merit factor against The Optimum Merit
factor of binary sequences. The upper bound
shows the highest merit factor which possible
to reach. On the contrary, the Optimum shows
the highest found merit factor.

Table 6 :Best Possible Binary Sequences Up
To Length N =32

Length {Number| Peak SL | Merit F | Exemple Sequence for Length ¥
N 1 e | w2 | {o.}
2 1 ! 200 D]

3 1 1 4.50 00!

4 2 1 400 0001

5 1 1 .25 00010

L} 7 2 251 006010

1 1 1 17 0061101

E 4 2 4.00 0000110}
9 6 3 ) Q00015010
10 19 2 185 000001010

1210 | ooduignin
720 | 000001100101
1408 | 0000011001010

refiet
-
-

14 18 2 516 000001 1041010

15 b4 3 150 000001 100110101

16 3 k) 133 0000001 11061 1610

17 1l 2 4.52 00001 10010010101 £

18 4 2 648 0000010110106 160

3] 2 3 622 000010101 EE1001101E

] 2 3 1.69 0000010111010011L0G1

21 3 3 §.48. 00111111EC011010L0L10

2 [ 3 6.21 00B0O011 0010101001103

3 & k] 5.63 DOGOIO0OL1 1001010110010

24 2 3 800 001(00011 1111050101101 1D

il 2 3 868 0001 11000000010101101 1001

% L k] 7.5 0000001 1100111010101 EC1 ED)

17 1 3 9.8% 00CH 1510001000100010010£101

23 2 2 1.8 00011 £10001000100¢103101 101
i 2 k] 678 000110001 113111013101 10110010
i 4 4 7463 000005111 105101 10101011 1001110
3 1 k] 17 00000001110001 1001001 1010106101
n 1 4 800 00000COLBIOGHOL0] 110001 100L0DL 1O

|+U|:p-rhomd —— Oplimum MF l

40.00
30,00 . s
k2000 el
10,00
000 — T —

24 6 8 1012141618202224 2628 3032
Length

Figure 9, Upper bound MF against
the Optimom MF of binary sequences

B. Best possible Polyphase Ternary and
Polyphase Quaternary Sequences

Up to now, the best possible polyphase
ternary sequences up to length N =26 and the
best possible polyphase quaternary sequences up
to length N =24, have been found as shown
in Table 7 and Table 8.

Polyphase ternary, only the sequences of
length 25 are not the Barker sequgpces, the
maximum autocorrelation function sidelobe
C,m are 1.5. However, their merit factor
are very high, 33.78, higher than the ordinary
ternary sequence, which are not more than
18.06[1].

The polyphase quaternary sequences of
length N =4, 8,10,16, and 20 have the infinity
value merit factor, the maximum autocorrelation
function sidelebe C,,, are 0. In addition, the
autocorrelation function at zero shift are equal
the values of their length. Up to length N =4,
only the even-length sequences have been
found that the sequences reach the maximum
ACF merit factor. Moreover, the odd-length
sequences have been found that the maximum

merit factor only reach,
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+:

2
MF=N

N-1 {an

Furthermore all the best possible poly-
phase quaternary sequences are under the

Barker sequences constraint,|C,(7)|SL

Figure 10, and 11 show graphs of Upper
bound Merit factor against the Optimum Merit
factor of polyphase temary, and polyphase
quaternary sequences. The upper bound shows
the highest merit factor, which possible to reach
on the other hand, the Optimum shows the

highest found merit factor.

Table 7: Best Possible Polyphase Temary
Sequences Up To Length N =26

Peak SL| Merit F | Example Sequence For Lengih
CM' MF {an}

0.5 9.00 0l

10 640 0oLz

05 o

1.0 000102

05 : 000E202

0.5 A 00110102

05 g 001100202

1.0 0001210110

L0 00012£01102

0.5 1 000012201202

10 000110120102

L0 0101001121002

1.0 m[l}lDlHDlHﬁl

10 A 0001212011011 162

10 X 000 1011022010202

1.0 03111001202102010

1.0 . 0006012202012021102

| By 00000122020120211021

10 000012 120222012202142
10 D010212111110021102012
1.0 001002222201 22002121020
1.0 T000011110210102212011201
15 03100E2101200001220202211
1.0 000012120111201021 10122022

Table 8: Best Possible Polyphase Quaternary
Sequences. Up To Length N =24

Length | Number| Peak SL{ Merit F | Example Sequence for Length &
N _ MF {a}

Infinity | 0013

625 | D012
1800 | 000213
817 | ooooz1a
Infinity | 00021131
1912 | 00001203
0011030231
1210 | 00000220131
7200 | 00002021133
1408 | ©DO0DI23IOE31N
49.00 | 00002132011201
1647 | 000001262032113
Infinity | 00000220)1331313
1806 | 0D00002011331313

Infinity

5400°| 000110330220113131
2006 | 0000002102331102313

00000202201133111313
2205 | G000001220020231103¢3

Infinity

121.0¢ 00(!)0“23[’}{2!032020313
24,08 00000002 220020123013131

7200 Q000G0222001230230231313

E—Uapﬂrhounﬂ ~=—Optimym MF ]

T
P ad

P A e
7

3 5 7 B H 13 15 17 19 21 23 25 27
Langth

T

Figure 10. Upper bound MF against
the Optimum MF of Polyphase Ternary sequences

. —s—Uppsi bouad —=—Optimum ilF

|
i
1
I
1t
ri
T

8 10 12 14 18 18 20 22 24 28
Langth

Figure 11. Upper bound MF against
the Optimum MF of Polyphase Quaternary sequences
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CONCLUSIONS

This paper has investigated the conse-
quences of employing a real measure of
correlation on complex-valued polyphase se-
quences, rather than the conventional complex

form of derivation.

The optimum Binary sequences up to
length N =32 were found by complete search
algorithm. There are only 7 Binary Barker
sequences have been found and these sequences

teach the upper bound,

The Polyphase Ternary sequences with

the optimum merit factor were found by

exhaustive search up to length N =26, So far,
only 7 lengths of the sequences are achieved
the upper bound and the longest known
sequence that gets to the upper bound has only
12 digits. Most of the sequences that have been
found have peak sidelobes equal or less than
1 and qualify the Barker constraint, C(7)<1.

The Polyphase Quaternary sequences
with ihe optimumn merit factor up to length
N =24 were found by complete search. There
are 5 values of N, all even, which reach the
upper bound. The longest known sequence that

has an infinite merit factor has 20 digits. O
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