การศึกษาการกระจายความร้อนของการทำลายเซลล์มะเร็ง ด้วยไมโครเวฟ โดยใช้วิธีไฟไนต์เอลิเมนท์ 3 มิติ

A STUDY OF HEAT DISTRIBUTION FOR MICROWAVE ABLATION USING 3D FINITE ELEMENT

เพชร นันทิวัฒนา

อาจารย์ประจำสาขาวิชาวิศวกรรมไฟฟ้า คณะวิศวกรรมศาสตร์ มหาวิทย<mark>าลัยศรี</mark>ปทุม E-mail : petch.na@spu.ac.th

บทคัดย่อ

งานวิจัยฉบับนี้นำเสนอการศึกษาการกระจายความร้อนของการทำลายเซลล์มะเร็งด้วยไมโครเวฟ โดยใช้วิธีไฟไนต์เอลิเมนท์แบบ 3 มิติ ที่ความถี่ 2.45 GHz ผ่านสายอากาศที่นำมาทดลอง 4 แบบ ประกอบด้วย สายอากาศแบบปลายเปิด สายอากาศแบบปลายเป็นฉนวน สายอากาศแบบปลายเป็นโลหะ และสายอากาศแบบเปิดช่อง ทำการศึกษาผลของการกระจายความร้อนเนื่องจากการปรับกำลังส่งที่ 50W, 100W และ 150W ที่เวลา 30, 60, 90, 120, 150 และ 180 วินาที จากการทดลองพบว่าหากมีการเพิ่มกำลังส่งหรือเพิ่ม ระยะเวลาจะทำให้เพิ่มปริมาตรในการทำลายเซลล์ โดยสายอากาศแบบปลายเปิดสามารถทำลายเซลล์ได้ปริมาตรสูงสุด แต่มีการกระจาย ความร้อนกลับมาที่ด้ามจับสูงสุด สายอากาศแบบปลายเป็นโลหะและสายอากาศแบบปลายเป็นฉนวนมีคุณสมบัติใกล้เคียงกับสายอากาศ แบบปลายเปิด สายอากาศแบบเปิดช่องมีการกระจายความร้อนอย่างสม่ำเสมอและมีรูปร่างการทำลายเซลล์ที่สมมาตร แต่ให้ปริมาตรใน การทำลายเซลล์ต่ำที่สุด

คำสำคัญ : การทำลายเซลล์ ไมโครเวฟ ไฟไนต์เอลิเมนท์ การกระจายอุณหภูมิ

ABSTRACT

This research presents three-dimensional finite element analyses of microwave ablation at frequency of 2.45 GHz. We studied the characteristics of various antennas for microwave ablation. Four configurations of antennas were considered: open-tip, dielectric-tip, metal-tip and slot. We analyzed the temperature distributions power at 50w, 100w and 150w and time at 30s, 60s, 90s, 120s, 150s and 180s. From the simulation results, the open-tip antenna had a largest volume but causes backward heating problem at higher power levels or during extended ablations. The metal-tip antenna and dielectric-tip antenna had similar the open-tip antenna. The slot antenna had uniform temperature distributions and symmetry shape but it had a smallest volume.

KEYWORDS: Ablation, Microwave, Finite Element, Temperature Distribution

บทนำ

ในปัจจุบันอัตราของผู้ป่วยมะเร็งตับที่เกิดขึ้นมีจำนวน มาก ได้มีการนำวิธีการรักษามะเร็งโดยใช้ความร้อนเข้าไปทำลาย เซลล์มะเร็งเพื่อยับยั้งการเจริญเติบโต ได้แก่ RFA (Radio Frequency Ablation) ซึ่งเป็นวิธีหนึ่งที่ใช้ในการรักษาโรคมะเร็ง โดยเรียกวิธีนี้ว่า HiTT (High Frequency Induced Thermotherapy) ซึ่งเป็นการเหนี่ยวนำไฟฟ้ากระแสสลับทำให้เกิดความถึ สูงถึง 375-500 kHz และให้กำลังสูงสุด 60 วัตต์ โดยการรักษา กระทำผ่านทางผิวหนังและใช้เข็มเป็<mark>นตัวเจาะเข้าไปยังเซลล์มะเร็ง</mark> ส่วนปลายเข็มจะเกิดความร้อน (D. Haemmerich et al., 2001) โดยจะมีน้ำเกลือเป็นตัวนำความ**ร้อนจากปลายเข็มแผ่กระจายท**ำลาย มะเร็งได้ดีขึ้น ส่วนพลังงานที่ใช้จะต้องขึ้นกับขนาดมะเร็งและ ดุลยพินิจของแพทย์ผู้ทำการรักษา การใช้คลื่นความถี่วิทยุถึงแม้ดู เหมือนจะประสบความสำเร็จในการรักษา แต่ก็มีข้อจำกัดในด้าน ของขนาดเซลล์มะเร็งที่จะถกทำลาย คือก้อนมะเร็งที่มีขนาดใหญ่ จะไม่สามารถรักษาด้วยวิธีนี้ได้ เนื่องจากเมื่อเนื้อเยื่อตับมีอุณหภูมิ สูงกว่า 90 องศาเซลเซียส จะทำให้ตับมีความต้านทานสูงมาก ้จนสนามไฟฟ้าไม่สามารถแพร่ออกไปในเนื้อเยื่อตับได้ ขนาดของ เซลล์มะเร็งที่ถูกทำลายจึงมีขนาดค่อนข้างเล็ก และไม่สามารถ กำหนดรูปแบบการกระจายความร้อนในก้อนมะเร็งที่จะทำล<mark>ายได้</mark> ไมโครเวฟ เป็นการแผ่รังสีความร้อน ในปั<mark>จจุบันยังไม่เป็นที่พอใจ</mark> เท่าไหร่นักเพราะการทำลายเซลล์มะเร็งไม่สมบูรณ์เท่าที่ควร การทำลาย เซลล์มะเร็งด้วยคลื่นไมโครเวฟนั้นทำได้โดยการส่ง คลื่นไมโครเวฟผ่านสายอากาศที่เสียบอยู่ในเซลล์เนื้อเยื่อที่เป็น มะเร็ง ซึ่งเมื่อส่งคลื่นไมโครเวฟผ่านสายอากาศ ทำให้คลื่นแม่เหล็ก ไฟฟ้ามีการกระจายออกไปยังเนื้อเยื่อที่เป็นมะเร็ง ก็ทำให้เนื้อเยื่อ ที่เป็นมะเร็งมีการดูดซับพลังงาน ซึ่งทำให้เกิดความร้อนในเนื้อเยื่อ มะเร็งอย่างรวดเร็ว เมื่อความร้อนที่เกิดขึ้นในเนื้อเยื่อที่เป็นมะเร็งสูง 50 องศาเซลเซียส ก็จะทำให้เนื้อเยื่อมะเร็งนั้นตายหรือฝอ่ (A.S. Wright et al., 2003)

ในการศึกษางานวิจัยที่เกี่ยวข้องกับงานวิจัยทางด้าน การทำลายเซลล์มะเร็งโดยใช้คลื่นความถี่วิทยุและคลื่นความถี่ ไมโครเวฟประกอบด้วย งานวิจัยด้านสายอากาศหรือโพรบที่มี การออกแบบ ทดลองใช้มีลักษณะหลายรูปแบบเช่น สายอากาศ แบบโมโนโพล สายอากาศแบบไดโพล สายอากาศแบบเปิดช่อง (Labonte et al., 1996) ได้พิจารณาลักษณะต่างๆ ของสายอากาศ แบบโมโนโพลหลายๆ รูปแบบเพื่อส่งคลื่นไมโครเวฟเข้าไปทำลาย เยื่อบุหัวใจ สายอากาศแบบปลายเป็นโลหะจะใช้ได้ดีที่สุด (L. Hamada al., 2000) ได้ทดลองสายอากาศแบบไดโพลที่ความถึ 915 MHz โดยมีความลึกของการสอดแทรกสายอากาศเข้าไปใน เนื้อเยื่อจำลองที่แตกต่างกัน สายอากาศที่นำมาทดลองเป็น <mark>สายอากาศแบบไดโ</mark>พลอย่างง่าย (Conventional Antenna) และ สายอากาศแบบไดโพลประยุกต์ (New Dipole Antenna) สายอากาศแบบ Cap-Choke (Jame C. Lin et al., 1996) เป็น สายอากาศที่มีการนำมาจำลองทั้งที่ความถี่ 2.45 GHz และ 915 MHz (S. Pisa et al., 2001) สายอากาศแบบ Cap-Choke ทำให้เกิดการกระจายของความร้อนในเนื้อเยื่อได้ โดยไม่มี ก<mark>ารสะท้อนกลับของก</mark>ระแส**ในสาย**ส่ง นอกจากนี้ผลของความร้อน ้ก็ไม่ขึ้นกับความลึกที่สอดใส่สายอากาศลงไปในเนื้อเยื่อ สามารถ **ควบคมตำแหน่งความร้อนซึ่งมันจะเกิดรอบ** ๆ บริเวณปลายของ สายอากาศ นอกจากนี้ยังมีผลการทดลองวางสายอากาศแบบคู่ **ซึ่งทำให้ขนาดของเซ**ลล์มะเร็งที่ทำลายได้มีขนาดใหญ่ขึ้น

งา**นวิจัยท**างด้**านของ**การทดลองจำลองด้วยคอมพิวเตอร์ เช่น การใช้วิธี Finite-Difference Time-Domain (FDTD), Antenna-Direction-Implicit Finite Difference (ADI-FC) สำหรับการแก้สมการความร้อน (S. Pisa et al., 2003) (Hurter et al. 1991) ได้ทำการออกแบบ และจำลองด้วยการวิเคราะห์ทาง คณิตศาสตร์กับสายอากาศแบบไดโพล โดยในการจำลองได้ปรับ เปลี่ยนความลึกที่สอดใส่สายอากาศเข้าไปในเนื้อเยื่อซึ่งผลปรากฏว่า ความลึกในการสอดใส่สายอากาศเข้าไปในเนื้อเยื่อ มีผลต่อรปแบบ ของแผลหรือการกระจายความร้อนที่เกิดขึ้น นอกจากนี้เขายัง บอกว่าสายอากาศจะมีการถ่ายทอดพลังงานสูงสุดเมื่อสายอากาศ มีความยาว L ดังนี้ $L=\lambda_{
m eff}$ / 2(G. Schaller et al., 1996) ได้พิจารณา สายอากาศแบบ Triaxial Choke Dipole ซึ่งสายอากาศแบบนี้ สามารถทำให้เกิดการดูดซับความร้อน (SAR) ได้สูงกว่าสายอากาศ แบบไดโพล และสายอากาศแบบเปิดช่อง (Slot Antenna) SAR จะเกิดขึ้นสูงสุดที่ส่วนเปิดช่องของ สายอากาศ และความยาวของ Choke มีค่า $\lambda_{\scriptscriptstyle eff}$ / 4 ความยาว ของ Choke จะช่วยลดผลที่เกี่ยวกับความลึกที่สอดสายอากาศ เข้าไปในเนื้อเยื่อและความลึกในการกระจายค่า SAR (Saito et al., 2001) ได้ทำการทดลองใช้สายอากาศแบบ Coaxial-Fed Slot สองอันมาทำการจำลองการทำลายเซลล์มะเร็งโดยใช้คลื่นไมโครเวฟ

ที่ความถี่ 2.45 GHz ซึ่งผลที่ได้จากการจำลองด้วยวิธี Tip-Split ทำให้ขนาดเซลล์ที่ถูกทำลายมีขนาดใหญ่ขึ้น เพราะขนาดของ เซลล์ที่ถูกทำลายเกิดจากกระแสที่ไหลจากสายอากาศทั้งสองอัน ดังนั้นในงานวิจัยนี้จึงได้นำวิธีการทางไฟไนต์เอลิเมนท์ 3

มิติ มาศึกษารูปแบบการกระจายความร้อนที่จะเกิดขึ้นในเนื้อเยื่อ ตับที่เป็นมะเร็งเมื่อส่งคลื่นไมโครเวฟที่ความถี่ 2.45 GHz ผ่านสาย อากาศแต่ละแบบที่กำลังส่ง และระยะเวลาต่างๆ เพื่อดูผลของ การกระจายความร้อน และปริมาตรการทำลายในแบบ 3 มิติ แทนแบบ 2 มิติ ซึ่งมีข้อจำกัดต่อการประยุกต์ใช้ในออกแบบ สายอากาศที่มีลักษณะการแพร่กระจายของสนามไฟฟ้าที่ไม่ สมมาตรต่อไป

สมการแมกซ์เวลล์ (Maxwell's Equations)

สนามแม่เหล็กไฟฟ้าในรูปทั่วไปแล้วจะเป็นคลื่นซึ่งเป็น สัญญาณที่มีฮาร์โมนิก (Time - Harmonic Field) หรืออีกนัยหนึ่ง คือ เป็นสัญญาณที่มีคาบการแกว่งที่แน่นอน ซึ่งโดยทั่วไปแล้วมัก จะแทนด้วยผลรวมของสัญญาณรูปซายน์ที่สามารถใช้พังก์ชัน ทางคณิตศาสตร์ ได้ดังสมการแมกซ์เวลล์

	$\nabla \mathbf{x}$	$\bar{H} = -$	$j\omega\varepsilon\vec{E}+\sigma\vec{E}$	(1)
		$\nabla \bullet \vec{D}$	$= \rho$	(2)
	,	$\nabla \bullet \vec{B}$:	= 0	(3)
		$\vec{D} = \varepsilon \vec{l}$		(4)
เมื่อ	$egin{array}{c} ec{E} \ ec{D} \ ec{H} \ ec{H} \end{array}$	Β = μμ = = =	สนามไฟฟ้า ฟลั๊กของสนามไฟฟ้า ความเข้มสนามแม่เหล็ก	(5)
וחי	$\hat{\rho}$ \bar{B}	-	ความหนาแน่นของประจุเชิงปริมาตร สนามแม่เหล็ก]
	Е	=	ค่าความยินยอมทางไฟฟ้า	
	μ	=	ค่าความซึมซาบแม่เหล็ก	

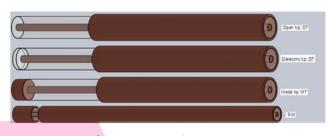
สมการความร้อนในทางชีววิทยา (The Bio-Heat Equation)

ในการวิเคราะห์ด้วยความถี่ไมโครเวฟได้พิจารณาถึง สนามไฟฟ้า สนามแม่เหล็ก และความหนาแน่นของกระแสไฟฟ้า ที่เกิดขึ้นในเนื้อเยื่อ การดูดซับความร้อนที่เกิดขึ้นในเนื้อเยื่อ ซึ่งมีรูปแบบของสมการ หรือตัวแปรต่าง ๆ ที่ส่งผลต่อการกระจาย ความร้อน (M.G. Skinner et al., 1998), (H.H. Pennes, 1948) ดังสมการที่ (6)

$$\rho c \frac{\partial T}{\partial t} = \nabla (k \bullet \nabla T) - h_b c_b \omega_b (T_b - T) + Q_m + Q_{ext} \quad (6)$$

เมื่อ

ρ	=	ค วามหนาแน่นจำเพาะของเนื้อเยื่อ
c	=	<mark>ค่</mark> าความจ <mark>ุความร้</mark> อนจำเพาะของเนื้อเยื่อ
k	=	<mark>ค่</mark> าควา <mark>มน้ำคว</mark> ามร้อนของเนื้อเยื่อ
h_b	=	สัมป <mark>ระสิทธ์</mark> การพาความร้อนจากเลือด
		์ ที่ <mark>ไหลซึ</mark> มอยู่ในเนื้อเยื่อ
c_b	=	<mark>ค่าคว</mark> ามร้อนจำเพาะของเลือด
$\omega_{\!\scriptscriptstyle b}$	=	อัตราฉีดเลือด
T_b	=	ค่าอุณหภูมิเลือด
Q_m	=	ค่าความร้อนจากกระบวนการเมตาโบลิซึม
		ของเม็ดเลือด
Q_{ex}	_t =	ค่าความร้อนจากภายนอก

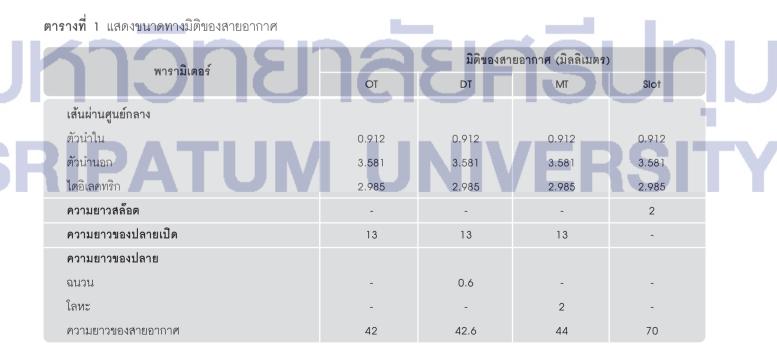

จากสมการ Bioheat(6) ที่นำมาใช้ในงานวิจัยนี้ ได้ละทิ้ง ค่าตัวแปรจำนวน 2 ตัว คือ สัมประสิทธิ์การพาความร้อนจาก เลือดที่ไหลซึมอยู่ในเนื้อเยื่อ (*h_b*) และพลังงานที่สร้างขึ้น โดยกระบวนการเมตาโบลิซึมของเม็ดเลือด (*Q_m*) ซึ่งค่าตัวแปรทั้ง

2 นี้ จะถือว่ามีค้าน้อยมาก เมื่อเทียบกับปริมาณ Q_{ext}

สมการการดูดซับความร้อน

พิจารณาจาก สนามไฟฟ้า และสนามแม่เหล็ก ที่มี การแพร่กระจายลงเนื้อเยื่อ จะเกิดการสูญเสียพลังงานในเนื้อเยื่อ (K. Saito et al., 2000) ซึ่งแสดงความสัมพันธ์ดังสมการที่ (7)

$$SAR = \frac{1}{p}Q_{ext} = \frac{\sigma}{\rho}|E|^2 \tag{7}$$



ในการวิเคราะห์ทางไฟไนต์เอลิเมนท์ได้วิเคราะห์ โครงสร้างของสายอากาศ ดังแสดงในภาพที่ 1 ประกอบด้วย สายอากาศแบบปลายเปิด (Open Tip) ซึ่งส่วนปลายของตัวนำ จะสัมผัสกับเนื้อเยื่อโดยตรง สายอากาศแบบมีปลายฉนวน (Dielectric Tip) ที่ปลายของสายอากาศจะถูกปิดอย่างสมบูรณ์ ด้วยฉนวน สายอากาศที่มีปลายเป็นโลหะ (Metal Tip) และ สายอากาศแบบเปิดข่อง (Slot) ซึ่งจะทำการเปิดข่องรอบตัวนำนอก ของสายอากาศ ในตารางที่ 1 แสดงขนาดทางมิติของสายอากาศ

การวิเคราะห์ข้อมูล

ในงานวิจัยนี้ทำการวิเคราะห์ข้อมูลโดยจำลองการทำงาน ด้วยวิธีการทางไฟไนต์เอลิเมนท์ 3 มิติ โดยใช้โปรแกรม Comsol Multiphysics Version 3.4 บนระบบปฏิบัติการ 64 บิท Intel[®] Core[™] 2 Duo RAM DDR2 4 GB และ HDD 200 GB โดยการจำลองการทำงานประกอบด้วย โมดูล 2 โมดูล ที่ใช้ใน

SAR = Specific absorption rate (W/kg) σ = สภาพความนำไฟฟ้าของเนื้อเยื่อ (S/m)

ระเบียบวิธีไฟไนต์เอลิเมนท์

(Finite Element Method)

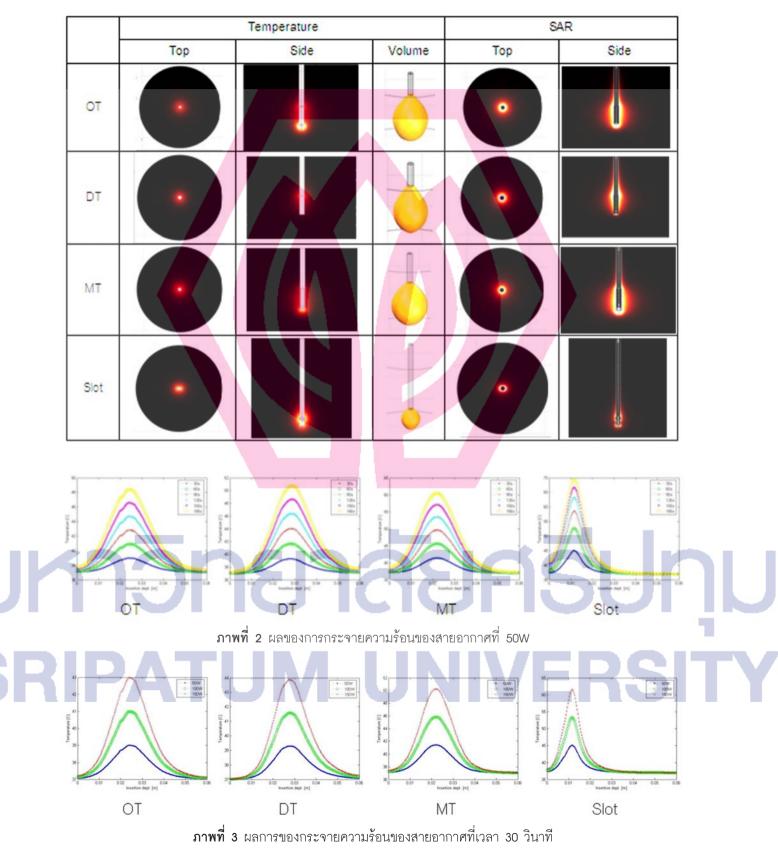
ระเบียบวิธีไฟไนต์เอลิเมนท์ (Finite Element Method : FEM) เป็นวิธีการคำนวณเชิงตัวเลขชนิดหนึ่งสำหรับแก้สมการ เชิงอนุพันธ์ จะทำการแบ่งรูปร่างของปัญหาอออกเป็นเนื้อที่หลาย ๆ ขึ้นที่เรียกว่าเอลิเมนท์ (Element) ปัญหานั้นจะต้องประกอบด้วย สมการเชิงอนุพันธ์และเงื่อนไขขอบเขตที่กำหนดให้ การหาค่า ผลเฉลยแม่นตรง (Exact Solution) จะประกอบด้วยค่าต่างๆ เป็นจำนวนอนันต์ ซึ่งเราไม่สามารถหาค่าผลเฉลยได้ จึงต้อง เปลี่ยนค่าทั้งหมดที่เป็นอนันต์ให้เป็นจำนวนที่นับได้ (Finite) ทำการแทนรูปร่างลักษณะของปัญหาด้วยเอลิเมนต์ที่มีขนาดต่าง ๆ กัน จะเริ่มจากการพิจารณาเอลิเมนท์ทีละเอลิเมนท์ ทำการสร้าง สมการให้แต่ละเอลิเมนท์ที่สอดคล้องกับสมการเชิงอนุพันธ์ของ ปัญหานั้นๆ จากนั้นนำสมการของแต่ละเอลิเมนท์ที่สร้างขึ้นมา ประกอบเข้าด้วยกัน รวมเป็นระบบสมการชุดใหญ่ จากนั้นทำการ กำหนดเงื่อนไขขอบเขต ที่ให้มาลงในสมการชุดใหญ่ แล้วจึง ทำการแก้สมการและได้ผลเฉลยโดยประมาณที่ตำแหน่งต่าง ๆ ของปัญหานั้น

เมื่อ

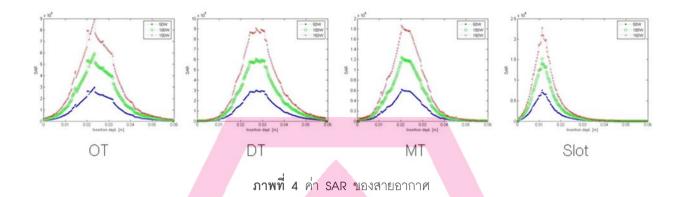
			ปริมาเ	ตร (ลูกบา	าศก์เซนติ	เมตร)			
เวลา กำลังส่ง		30s	60s	90s	120s	150s	180s		
	50	4.64	9.23	13.24	16.95	20.33	23.41		
OT	100	8.60	15.93	22.31	27.99	33.38	38.19		
	150	11.99	21.52	29.60	36.98	43.50	49.89		
	50	2.52	5.28	7.77	10.13	12.16	14.15		
DT	100	5.29	10.19	14.49	18.35	21.87	25.23		
	150	7.71	14.29	20.03	25.14	29.73	34.09		
	50	4.44	8.76	12.57	16.00	19.13	22.00		
MT	<u> 100</u>	8.55	15.75	21.87	27.49	32.34	36.90		
	150	12.09	21.54	29.70	36.55	42.96	48.90		
	50	0.67	1.48	2.23	2.96	3.65	4.26		
Slot	100	1.57	3.20	4.73	6.25	7.61	8.95		
	150	2.35	4.72	6.92	9.06	11.15	13.08		

ตารางที่ 3 แสดงปริมาตรของการทำลายเนื้อเยื่อที่อุณหภูมิ สูงกว่า 50 องศาเซลเซียส

แสดงปริมาตร การทำลายเซลล์ของสายสายอากาศแต่ละแบบ
ที่ระยะเวลาต่าง ๆ ที่อุณหภูมิ 50 องศาเซลเซียส และจากตารางที่
4 จะเห็นว่าการกระจายความร้อนและค่า SAR มีการกระจาย
ตัวอย่างสมมาตรรอบสายอากาศ และแพร่กระจายออกจาก
บริเวณปลายของสายอากาศที่ทำการเปิดตัวนำนอกออกของ
สายอากาศแต่ละแบบ ซึ่งสามารถทำงานเซลล์มะเร็งได้ ภาพที่
2 แสดงของการกระจายความร้อนที่ 50 W ที่เวลาต่าง ๆ จะเห็นว่า
หากทำการเพิ่มระยะเวลาจะสามารถเพิ่มความสามารถใน
การกระจายความร้อนได้ และในภาพที่ 3 แสดงของการกระจาย
ความร้อนที่เวลา 30 วินาที ที่กำลังส่งต่าง ๆ จะเห็นว่าหากทำ
การเพิ่มกำลังส่งก็จะสามารถเพิ่มความสามารถในการกระจาย
ความร้อนได้เช่นเดียวกับการเพิ่มเวลา และภาพที่ 4 แสดงค่า
SAR ของสายอากาศ ซึ่งการเปลี่ยนแปลงไม่ขึ้นกับเวลาแต่ขึ้นกับ
กำลังส่งที่ป้อนให้สายอากาศ


การจำลองการทำงาน คือ RF Module, Heat Transfer (Bioheat Equation) ในการคำนวณผลลัพธ์ทางไฟไนต์เอลิเมนท์ แบบจำลอง ทางไฟไนต์เอลิเมนท์ประกอบด้วย ชุดสายอากาศ และเนื้อเยื่อ โดยสายอากาศจะแทงอยู่กึ่งกลางของเนื้อเยื่อรูปทรงกระบอก ที่มีขนาดเส้นผ่านศูนย์กลาง 6 เซนติเมตร และความสูง 8 เซนติเมตร ส่วนของสายอากาศจะถูกแบ่งออกเป็นขึ้นย่อย ๆ ด้วย เอลิเมนต์ที่มีรูปแบบเป็นสามเหลี่ยม ขนาดของเอลิเมนต์ สายอากาศที่ใช้มีขนาดอยู่ในช่วง 0.01-1.00 มิลลิเมตร ในส่วน ของเอลิเมนต์ในเนื้อเยื่อตับมีการกระจายของขนาดเอลิเมนต์ โดยบริเวณรอบ ๆ สายอากาศจะมีขนาดของเอลิเมนต์ที่ ส่วนบริเวณที่ห่างออกจากสายอากาศจะมีขนาดของเอลิเมนต์ที่ ใหญ่ขึ้น เพื่อลดขนาดของหน่วยความจำของเครื่องในการจำลอง การทำงาน ขนาดของเอลิเมนต์ของเนื้อเยื่อมีขนาดอยู่ในช่วง 0.1-1.0 มิลลิเมตร รายละเอียดของพารามิเตอร์ของการคำนวณแสดง ได้ดังตารางที่ 2

ตารางที่ 2 รายละเอียดของค่าคุณสมบัติทางไฟฟ้าของ เนื้อเยื่อตับ


พารามิเตอร์	ค่า	พารามิเตอร์	ค่า
$ ho_{liver}$	1,050 (kg/m3)	k	0.56 (S/m)
C _{liver}	3,700 (J/kg.K)	$\sigma_{_{liver}}$	1.69 (S/m)
$ ho_{bl}$	1,000 (kg/m3)	\mathcal{E}_{liver}	43.03
c_{bl}	3,639 (J/kg.K)	\mathcal{E}_{diel}	2.03
W _{bl}	3.6x10-3 (m3/kg.s)	\mathcal{E}_{insul}	2.6

การทดลองและผลการทดลอง

ในงานวิจัยนี้ ได้ทำการคำนวณผลของการกระจาย ความร้อน และการกระจายค่า SAR ที่เกิดจากสนามไฟฟ้าของ สายอากาศแบบต่างๆ 4 แบบ ประกอบด้วย สายอากาศแบบ ปลายเปิด สายอากาศแบบปลายเป็นฉนวน สายอากาศแบบปลาย เป็นโลหะ และสายอากาศแบบเปิดข่อง โดยใช้วิธีการคำนวณ ไฟในต์เอลิเมนท์ด้วยโปรแกรม Comsol Multiphysics ที่ความถี่ 2.45 GHz ที่กำลังส่ง 50W, 100W และ 150W ที่เวลา 30, 60, 90, 120, 150 และ 180 วินาที จากผลการทดลองในตารางที่ 3

ตารางที่ 4 ผลการกระจายความร้อนและค่า SAR ของสายอากาศที่ 50 W เวลา 60 วินาที

อย่างสม่ำเสมอ และไม่เกิดบัญหาการกระจายความร้อนกลับมา ที่ด้ามจับ มีรูปทรงที่สม่ำเสมอกัน แต่จะมีขนาดของปริมาตร การทำลายเซลล์ที่ต่ำที่สุดเทียบกับสายอากาศชนิดอื่น ดังแสดง ในผลการทดลอง

สรุป

จากผลการทดลองจะเห็นว่าสายอากาศทุกแบบมี การกระจายความร้อนที่เพิ่มขึ้น หากมีการเพิ่มกำลังส่งหรือเพิ่ม เวลา เนื่องจากค่าสนามไฟฟ้าแพร่กระจายในเนื้อเยื่อเกิด การสูญเสีย พลังงานในเนื้อเยื่อ เพราะเนื้อเยื่อมีการดูดซับพลังงาน ซึ่งพลังงานที่สูญเสียไปจะกลายเป็นความร้อน สำหรับค่า SAR ที่เกิดจากสนามไฟฟ้านั้น จะไม่ขึ้นอยู่กับเวลาในการเลือกใช้งาน การทำลายเซลล์จริงจะขึ้นอยู่กับขนาดและรูปทรงของมะเร็งใน ผู้บ่วยแต่ละคน ซึ่งจะมีรูปทรงที่ไม่แน่นอน และขึ้นอยู่ดุลยพินิจ ของแพทย์ โดยงานวิจัยนี้เป็นการนำเสนอการทำงานของสายอากาศ 4 แบบ ที่ทำการปรับกำลังส่ง และเวลา เพื่อให้เห็นผลของ การทำลายเซลล์เบื้องต้นประกอบการตัดสินใจของแพทย์ประกอบ การรักษา และในอนาคตผู้วิจัยจะนำวิธีการไฟไนต์เอลิเมนท์แบบ 3 มิติ มาใช้ในการออกแบบสายอากาศที่มีลักษณะการแพร่ กระจายสนามไฟฟ้าแบบไม่สมมาตร เพื่อนำไปใช้กับการทำลาย เซลล์มะเร็งที่อยู่ใกล้กับเส้นเลือดใหญ่ต่อไป

กิตติกรรมประกาศ

ขอขอบคุณมหาวิทยาลัยศรีปทุมที่สนับสนุนทุนใน การวิจัยในครั้งนี้

สายอากาศแบบปลายเปิด เป็นสายอากาศที่มีการกระจาย ความร้อน ที่ตำแหน่งของปลายเปิด เริ่มจากปลายสุดของ สายอากาศ และมีการเพิ่มการกระจายความร้อนอย่างต่อเนื่อง หากให้เวลามากขึ้น หรือเพิ่มกำลังส่ง ทำให้ปริมาตรของการทำลาย เซลล์สูงขึ้น โดยสายอากาศนี้จะให้ปริมาตรการทำลายเซลล์ สูงที่สุด เมื่อเทียบกับสายอากาศชนิดอื่น แต่หากให้เวลาและ กำลังงานที่มากจะทำให้เนื้อเยื่อบริเวณใกล้กับปลายสายอากาศ มีความร้อนสูง และมีการกระจายความร้อนกลับมาที่ด้ามจับสูง ดังแสดงในผลการทดลอง สายอากาศแบบปลายเป็นฉนวน เป็นสายอากาศที่มีการกระจายของอุณหภูมิที่ตำแหน่งของปลายเปิด โดยเริ่มจากกลางสายอากาศบริเวณรอยต่อ<mark>ระหว่างตัวนำนอกกับ</mark> ้ส่วนที่เปิดของสายอากาศ และมีการเพิ่มของการกระจายอุณหภูมิ อย่างต่อเนื่อง หากมีการให้เวลามากขึ้น หรือเพิ่มกำลังส่ง และปริมาตร ของการทำลายเซลล์สูงเป็นอันดับที่ 3 เทียบกับสายอากาศชนิดอื่น มีการกระจายความร้อนกลับมาที่ด้ามจับสูงดังแสดงในผลการทดลอง แต่มีคุณสมบัติที่ดีกว่าสายอากาศแบบปลายเปิด สายอากาศแบบ ปลายเป็นโลหะ เป็นสายอากาศที่มีการกระจายอุณหภูมิที่ตำแหน่ง ของปลายเปิด โดยเริ่มจากปลายสุดของสายอากาศ เช่นเดียวกับ สายอากาศแบบปลายเปิด และมีการเพิ่มของการกระจายอุณหภูมิ อย่างต่อเนื่องหากมีการให้เวลามากขึ้น หรือเพิ่มกำลังส่งให้ปริมาตร ของการทำลายเซลล์สูงเป็นอันดับที่ 2 เทียบกับสายอากาศขนิดอื่น หากให้เวลาและกำลังงานที่มากจะทำให้เนื้อเยื่อบริเวณใกล้กับปลาย สายอากาศมีความร้อนสูง และมีการกระจายความร้อนกลับมาที่ ้ด้ามจับต่ำกว่าสายอากาศ 2 แบบแรก ดังแสดงในผลการทดลอง สายอากาศแบบเปิดช่อง เป็นสายอากาศที่มีการกระจายอุณหภูมิ ที่ตำแหน่งของช่องเปิด และมีการเพิ่มของการกระจายอุณภูมิ

รายการอ้างอิง

- A.S. Wright, F.T. Lee, Jr. and D.M. Mahvi. 2003. "Hepatic microwave ablation with multiple antennas results in synergistically larger zones of coagulation necrosis." **Ann sure Oncol.** 10: 275-283.
- A.W. Guy. 1984. "History of Biological Effects and Medical Application of Microwave Energy."
 IEEE Transaction on Microwave Theory and Techniques. Mit-32, 9: 1182-1199.
- D. Haemmerich, S.T. Sraelin, S. Tungjitkusolmun, F.T. Lee, Jr., D.M. Mahvi, and J.G. Webster. 2001. "Hepatic bipolar radio-frequency ablation between separated multiprong electrodes." IEEE Trans Biomed Eng. 48: 1145-1152.
- G.M. Hahn. 1984. "Hyperthermia for the Engineer: A Short Biological Primer." IEEE Transactions on Biomedical Engineering. BME-31, 1: 3-8.
- G. Schaller, J. Erb and R. Engelbrecht. 1996. "Field Simulation of Dippole Antenna for Interstitial Microwave Hyperthermia." IEEE Transactions on Microwave Theory and Tech. 44: 887-895.
- H.H. Pennes. 1948. "Analysis of Tissue and Arterial Blood Temperature in Resting Forearm." Journal of Applied Physiology. 1: 93-122.
- James C. Lin and Yu-Jin Wang. 1996. "The Cap-Choke Catheter Antenna for Microwave Ablation Treatment." IEEE Transactions on Biomedical Engineering. 43, 6: 657-660.
- K. Saito, Y. Hayashi, H. Yoshimura, K. Ito. 2000. "Heating characteristics of array applicator composed of two coaxial-slot antennas for microwave coagulation therapy." IEEE Transactions on Microwave Theory and Techniques. 48, 11: 1800-1806.

- K. Saito, T. Taniguchi, H. Yoshimura and K. Ito. 2001.
 "Estimation of SAR Distribution of a Tip-Split Array Application for Microwave Coagulation Therapy Using the Finite Difference Method."
 IECE Transactions Electronic. E84-C: 948-954.
- L. Hamada, K. Saito, H. Yoshmura and K. Ito. 2000. "Dielectric-Loaded coaxial-slot antenna for interstitial microwave hyperthermia: longitudal, control of heating patterns." Int. J. Hyperthermia. 16: 219-229.
- M.G. Skinner, M.N. lizuka, M.C. Kolios and M.D. Sherar. 1998. "A theoretical comparison of energy sources- microwave, ultrasound and laser - for interstitial thermal therapy." Physics in Medicine and Biology. 43: 3535-3537.
- S. Labbonte, A. Blais, S.R Legault, H.O. Ali and L. Roy. 1996. "Monopole antennas for microwave catheter ablation." IEEE Transactions on Microwave Theory and Tech. 44: 1832-1840.
- S. Pisa, M. Cavagnaro, P. Bernardi and J.C. Lin. 2001.
 "A 915-MHz antenna for microwave thermal ablation treatment: physical design computer modeling and experimental measurement." IEEE Transactions on Biomedical Engineering. 48: 599-601.
- S.Pisa, M. Cavagnaro, E. Piuzzi, P. Bernardi and J.C. Lin. 2003. "Power density and temperature distributions produced by interstitial arrays of sleeved-slot antennas for hyperthermic cancer therapy." IEEE Transactions on Microwave Theory and Tech. 51, 12: 2418-2426.
- W. Hurter, F. Reinbold and W.J. Lorenz. 1991. "A Dippole Antenna for Interstitial Microwave Hyperthermia."
 IEEE Transactions on Microwave Theory and Tech. 39: 1048-1054.

มหาวิทยาลัยศรีปทุม

>> เพชร นันทิวัฒนา

สำเร็จการศึกษาระดับปริญญาตรี สาขาวิศวกรรมไฟฟ้า จากมหาวิทยาลัยศรีปทุม ปริญญาโท สาขาวิศวกรรม อิเล็กทรอนิกส์ และปัจจุบันกำลังศึกษาในระดับปริญญาเอก สาขาวิศวกรรมไฟฟ้า สถาบันเทคโนโลยีพระจอมเกล้า เจ้าคุณทหารลาดกระบัง

ปัจจุบันทำงานในตำแหน่ง อาจารย์ประจำสาขาวิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม คณะวิศวกรรมศาสตร์ มหาวิทยาลัยศรีปทุม มีความสนใจทางด้าน Embedded System, Digital and Image Processing, Wireless Sensor Network และ Biomedical Engineering