

115 kV CU/XLPE/LS/CWS/MDPE

Per Spec. IEC 60840 where applicable

PHELPS DODGE INTERNATIONAL (THAILAND) LIMITED

Cable Dimension and Construction

Description		unit	CU	800 mm2
Diameter of Conductor	(Approx.)	mm	34.0	
S/C Conductor screen thickness	(Approx.)	mm		1.50
Insulation thickness	(Min. Avg.)	mm	1	6.00
Diameter over Insulation	(Approx.)	mm		70.2
S/C Insulation screen thickness	(Approx.)	mm		1.50
Lead alloy E sheath thickness	(Min. Avg.)	mm		2.1
Diameter over Lead aloy E sheath	(Approx.)	mm		78.9
No. of Cu wires / Dia.of each wire	(Approx.)	- / mm	62	/ 2.03
Outer sheath thickness	(Min. Avg.)	mm		4.0
Overall diameter	(Approx.)	mm		95
Total cable weight	(Approx.)	kg/km	1	9,100
Maximum Rdc of conductor at 20°C		Ω /km	0.	0211
Maximum Rac of conductor at 90°C		Ω /km	0.	0303
Minimum Insulation Resistance at 20°C		$M\Omega/km$		985
Conductor Short Circuit Current 1 sec		kA		114
Screen fault current carrying capacity for	or 1 sec	kA		40

$$I_{sc} = \frac{n\varepsilon}{1000} \sqrt{\frac{K^2 S^2}{t} \ln\left(\frac{\theta_f + \beta}{\theta_i + \beta}\right)}$$

Where Isc : Permissible fault current (kA)

- **S** : Cross-sectional area of the current carrying component (mm²)
- n : Number of shield
- K : Constant depending on the material of the current carrying component $(As^{1/2}/mm^2)$
- t : Duration of fault current (seconds)
- ϵ : Factor to allow for heat loss into the asjacent components
- θ_i : Initial temperature (°C)
- θ_f : Final temperature (°C)
- β : Reciprocal of temperature coefficient of resistance at 0 °C

Parameters	Cu Wire Shield	Tape Shield	Armour	Lead Sheath
К	226	-	-	41
s	3.24	-	-	499.42
n	62			-
t	1	-	-	1
θi	75	-	-	75
θf	200	-	-	200
β	234.5	-	-	230
ε	1.00		-	1.11
ISC	26.4	0	0	13.4
Total Lec			Lencond	

Reference : IEC Standard Publication No. 949: Calculation of thermally permissible short-circuit

currents, taking into account non-adiabatic heating effects.

, ×

ITB - 22&115 kV Underground Cable System Improvement

APPENDIX 2: TECHNICAL SCHEDULES

1.	115kV Power Cables		800 mm ²
1	Tender		
2	Manufacturer		Phelps Dodge International(Thailand)
3.	Manufacturer 's type designation		HXLP/LS/CWS/PE
4.	Numbers of cores		1
5.	Rated Voltage Uo/U	(kV)	66/115
6.	Highest operating voltage under normal conditions	(kV)	123
7.	Lightning impulse withstand voltage	(kV)	550
8.	Rated frequency	(Hz)	50
9.	Ambient air temperature range		
	- Minimum installation temperature	(°C)	_10
10.	Nominal cross-sectional area of conductor	(mm²)	800
11.	Continuous current rating		
	- In air at +30°C (flat formation, cross bond)	(A)	1035
	- Under conditions in item 44 (Direct buried)	(A)	800
12.	Maximum thermal short circuit current of the conductor	(1sec), cable	e loaded as in
	item 11 Before short circuit	(kA)	113.6
	- Final conductor temperature	(°C)	250
13.	Maximum dynamic short circuit current (see item 44)	(kA)	177.5
14.	Maximum thermal short circuit current of the		
	metallic shield (1sec), cable loaded as in item 11		
	- Before short circuit (Cu.wire shield + Lead sheath)	(kA)	40

a General Cable company

ITE	3 - 22&115 kV Undergro	und Cable System	Improvemer	ň
15	Conductor			
	- Material			Uncoated Copper
	- Design			Circular Compact
	- Nominal diameter	(Approx.)	(mm)	33.9
16.	Conductor screen			
	- Material			Semi-conductive XLPE
	- Minimum thickness	(Min.Avg.)	(mm)	1.5
17.	Maximum dielectric stress a (Assumed smooth)	t conductor screen	(MV/m)	5.71
18.	Insulation			
	- Material			XLPE
	- Minimum average thicknes semi-conductive layer)	s (excluding (Mln. Avg.)	(mm)	16.0
	- Minimum thickness at any semi-conductive layer)	place (excluding (Min. Spot)	(mm)	14.4
19.	Insulation screen			
	- Material			Semi-conductive XLPE
	- Minimum thickness	(Min. Avg.)	(mm)	1.5
20.	Vulcanization method			
	- Medium in curing process			N ₂
	- Medium in cooling process			N ₂
	- Is water used in any phase	of process?		No
21	Metallic sheath			
	- Material and type			Alloy E Lead
	- Additive in lead sheath (if s	uch) to improve		

.

	vibration resistance				Antimony (sb)	
	- Minimum r adial- thicknes	s (Min. Spot)		(mm)	1.9	
	- Nominal thickness	(Min. Avg.)		(mm)	2.1	
22	Nominal diameter over me	etallic sheath - (A	(pprox.)	(mm)	78.5	
23	Armour (if any)					
	- Bedding; material and ty	ре			N/A	
	- Armouring; material and	type			N/A	
	- Minimum thickness			(mm)	N/A	
	- Nominal diameter over a	rmour		(mm)	N/A	
	- Tensile strength			(kN)	N/A	
24	Outer sheath					
	- Material				MDPE	
	- Nominal thickness	(Min. Avg.)		(mm)	4.0	
	- Minimum thickness	(Min. Spot)		(mm)	3.3	
25.	Additional constructional p	parts				
	- Material Cu	.Wire &Cu. contact tap	be, S/C W	/B tape, N	/C W/B tape	
	- Cause for usage Cu	wire&Cu.contact tape	fulfil the r	equiremer	nt of phase to earth curre	int rating
	<u></u>	W/B tape&N/C W/B tap	pe provide	e a continu	ous longitudinal watertig	ht barrier
26	Nominal overall diameter of	of complete cable	(Approx.)	(mm)	95	
07				<i></i>		
27	Nominal weight of comple	te cable	(Approx.)	(kg/m)	19.1	
28	Installation minimum bend	ling radius				
	- Laid direct in ground or in	•		(m)	1.62	
	- Laid in ducts			(m)	1.62	
	- Cable placed into positio	n adjacent to			1.04	
				(m)	1.60	
	joint or terminations			(m)	1.62	

29	Norminal internal diameter of ducts	(mm)	- Direct buried per item 44)
30	Maximum DC resistance of conductor at 20 $^{\circ}\mathrm{C}$	(Ω/km)	0.0221
31	Maximum AC resistance of conductor at 90°C		
	(see conditions in Item 44)	(Ω/km)	0.0321
32	Reactance per phase of three phase circuit at 50 Hz		
	(see conditions in Item 44)	(Ω/km)	0.123
33	Maximum DC resistance of metallic sheath		
	at 20 $^{\circ}$ C (Lead sheath parallel with Cu. wire)	(Ω/km)	0.075
34	Maximum DC resistance of armour at 20°C	(Ω/km)	<u>N/A</u>
35	Maximum capacitance	(µF/km)	0.243
36	Maximum charging current at nominal voltage	(mA/m)	5.04
37	Maximum value of tangent of dielectric loss angle of cabie		
	when laid direct in the ground at nominal voltage		
	and 50 Hz at the conductor temperture of		
	As item 41 at 2 kV and 50Hz at the conductor temperature	e of	
	- +20 ^o C		-
	- +90 ^O C		<u>10 x 10⁻⁴</u>
38	Maximum value of tangent of dielectric loss angle of cable	!	
	at 50Hz at a conductor temperature of +20 $^{\circ}$ C		
	- not more than 50% of nominal voltage		-
	- at 100% of nominal voltage		40 x 10 ⁻⁴
	- at 200% of nominal voltage		
39	Maximum change in the value of tangent of dielectric		
	loss angle between 60% of nominal voltage and 200%		
	of nominal voltage at 20 ^O C		20 x 10 ⁻⁴
40	Maximum dielectric loss of cable of three phase circuit		
	when laid direct in the ground at nominal voltage		
	and 50 Hz at the conductor temperature	(W/m/phase)	0.308

41	Metallic shield dielectric loss of cable of three phase					
	circuit at nominal voltage, 50 Hz and current rating given					
	in item 11		(W/m)	20.36		
42	Induced voltage in the metallic shield which is I	boned by				
	single point system	(V/km)	(V/A/m)	86.3		
43	Zero-sequence reactance in three phase circui	it,				
	installed cables as item 44	(Ω/km)		0.0344		
44	Installation and operation conditions on which o	current				
	carrying capacity and maximum dynamic short	circuit				
	current are based					
	- Maximum ambient temperature in air		(°C)	45		
	- Maximum temperature in ground		(°C)	30		
	- Maximum conductor temperature in ground		(°C)	90		
	- Maximum conductor temperature in trough		(°C)	90		
	- Are cables laid direct in ground?			Yes		
	- Installation depth in ground		(mm)	1000		
	- Recommended method of protection of cable	es		_		
	- Are cables laid in trough?			Yes		
	- Minimum diameter of the trough		(mm)	_		
	- Installation depth of the trough		(mm)	_		
	- Installation formation (trefoil, flat)		Trefoil			
	- Distance between phase			Touching		
	- Distance between circuits		-			
	- Is metallic shield bonded at cross bond?		Yes			
	- Other installation conditions			-		
45	Maximum permissible tensile force in pulling		(kN)	35.1		
46	Dimension of cable trench		(mm)			

47 Water tree problems

How are the cables protected against water trees?

- During the insulating process we utilize crosslinked compounds of extra clean quality and the process utilizes nitrogen curing and nitrogen cooling. This eliminates the presences of water during this critical process.

- After insulating the cable is wrapped with a water blocking tape and a lead sheath is

extruded over the conductor to provide an impermeable barrier for moisture during the

life of the cable. This lead sheath protects the cable from physical and chemical

deterioration.

- The splicing and terminating kits are designed to insure that moisture will not be allowed to enter the cable.

Is water tree retardation tested or studied anyway in the cables? How?

- The water tree retardation has been studied by the manufactures of the compounds.

- We do an inspection on every length of cable for voids and contaminates per IEC and AEIC standards to insure the quality of cable and stability of the process.

Are there any guarantees that there shall be no water trees in the cables?

Every process in the manufacturing of the cable is designed to eliminate water treeing. By using the latest state of the art equipment and materials. This is the best guarantee for the service life to the cable.