FAIRCHILD

DM7414
Hex Inverter with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function．Each input has hyster－

Connection Diagram

Function Table
$\mathbf{Y}=\overline{\mathbf{A}}$

Input	Output
A	\mathbf{Y}
L	H
H	L

H＝High Logic Level
＝Low Logic Level
 output． slowly changing input signal to a fast changing，jitter free

Absolute Maximum Ratings (Note 1)

$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

Operating Frea Air Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM5414			DM7414			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
$\mathrm{V}_{\text {T+ }}$	Positive-Going Input Threshold Voltage (Note 2)	1.5	1.7	2	1.5	1.7	2	V
$\mathrm{V}_{\text {T- }}$	Negative-Going Input Threshold Voltage (Note 2)	0.6	0.9	1.1	0.6	0.9	1.1	V
HYS	Input Hysteresis (Note 2)	0.4	0.8		0.4	0.8		V
I_{OH}	High Level Output Current			-0.8			-0.8	mA
I_{OL}	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Typ (Note 3)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}-\mathrm{Min}} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{T}+} \mathrm{Max} \end{aligned}$			0.2	0.4	V
$\mathrm{I}_{\text {+ }}$	Input Current at Positive-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}+}$			-0.43		mA
$\mathrm{I}_{\text {T- }}$	Input Current at Negative-Going Threshold	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~V}_{1}=\mathrm{V}_{\mathrm{T}_{-}}$			-0.56		mA
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.2	mA
l_{OS}	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 4) } \end{aligned}$	DM54	-18		-55	mA
	Output Current		DM74	-18		-55	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			22	36	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			39	60	mA

Note 2: $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 4: Not more than one output should be shorted at a time.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\mathrm{PLH}}$	Propagation Delay Time	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		22	ns
	Low to High Level Output	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		22	ns

\square

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Ceramic Dual-In-Line Package (J)
Order Number DM5414J
Package Number J14A

$\frac{0.092}{(2.337)}$ OIA $\frac{0.030}{(0.762)}$ MAXPH
OPTION 1

14-Lead Molded Dual-In-Line Package (N)
Order Number DM7414N
Package Number N14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Ceramic Flat Package (W)
Order Number DM5414W
Package Number W14B

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor		Fairchild Semiconductor

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

Absolute Maximum Ratings(Note 1)
(Note 2)
DC Supply Voltage (V_{DD})
Input Voltage $\left(\mathrm{V}_{I N}\right)$
Input Voltage (V_{IN})
Storage Temperature Range (T_{S})
Power Dissipation (P_{D})
Dual-In-Line
Small Outline
Lead Temperature (T_{L})
(Soldering, 10 seconds)

Recommended Operating Conditions (Note 2)

-0.5 V to $+18 \mathrm{~V}_{\mathrm{DC}}$	DC Supply Voltage (V_{DD}) 3 V to $15 \mathrm{~V}_{\mathrm{DC}}$
-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}}$	Input Voltage ($\mathrm{V}_{\text {IN }}$) 0 V to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Operating Temperature Range (T_{A}) $\quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$\begin{aligned} & 700 \mathrm{~mW} \\ & 500 \mathrm{~mW} \end{aligned}$	Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and Electrical Characteristics table provide conditions for actual device operation.
$260^{\circ} \mathrm{C}$	Note 2: $\mathrm{V}_{\text {SS }}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		${ }^{+25}{ }^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
$\overline{\mathrm{ID}}$	Quiescent Device Current	$\begin{aligned} & V_{D D}=5 \mathrm{~V}, \\ & V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=10 \mathrm{~V}, \\ & V_{I N}=V_{D D} \text { or } V_{S S} \\ & V_{D D}=15 \mathrm{~V}, \\ & V_{I N}=V_{D D} \text { or } V_{S S} \end{aligned}$		$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$			$\begin{aligned} & 0.25 \\ & 0.5 \\ & 1.0 \end{aligned}$		7.5 15 30	$\mu \mathrm{A}$
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
$\overline{\mathrm{V}_{\mathrm{OH}}}$	HIGH Level Output Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\overline{\mathrm{V} \text { IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \end{aligned}$			$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & 3.0 \end{aligned}$	V
$\overline{V_{I H}}$	HIGH Level Input Voltage	$\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}}<1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.0 \\ 8.0 \\ 12.0 \\ \hline \end{gathered}$		$\begin{gathered} 4.0 \\ 8.0 \\ 12.0 \end{gathered}$			$\begin{gathered} 4.0 \\ 8.0 \\ 12.0 \\ \hline \end{gathered}$		V
IoL	LOW Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		mA
$\overline{\mathrm{loH}}$	HIGH Level Output Current (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.64 \\ -1.6 \\ -4.2 \end{gathered}$		$\begin{gathered} \hline-0.51 \\ -1.3 \\ -3.4 \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.88 \\ -2.25 \\ -8.8 \\ \hline \end{gathered}$		$\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$		mA
$\overline{\mathrm{IN}}$	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} -0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$
Note 3: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified. Note 4: I_{OH} and I_{OL} are tested one output at a time.										

AC Electrical Characteristics（Note 5） $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=200 \mathrm{k} \Omega, \mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}} \leq 20 \mathrm{~ns}$ ，unless otherwise specified						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time from Input to Output	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 50 \\ & 30 \\ & 25 \end{aligned}$	$\begin{aligned} & 90 \\ & 60 \\ & 50 \end{aligned}$	ns
$\mathrm{t}_{\text {THL }}$ or $\mathrm{t}_{\text {TLH }}$	Transition Time	$\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 80 \\ & 50 \\ & 40 \end{aligned}$	$\begin{gathered} 150 \\ 100 \\ 80 \end{gathered}$	ns
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance	Any Gate		6	15	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	Any Gate（Note 6）		12		pF

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which he safety of the device cannot be guaranteed. The device should not be perated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.8	mA
I_{OL}	LOW Level Output Current			16	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$	2.4	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {I }}=0.4 \mathrm{~V}$			-1.6	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)	-18		-55	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		11	21	mA
${ }^{\text {CCL }}$	Supply Current with Outputs LOW	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$		20	33	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Max	Units
$t_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ $\mathrm{R}_{\mathrm{L}}=400 \Omega$		27	ns
	Propagation Delay Time HIGH-to-LOW Level Output			19	ns

Physical Dimensions inches (millimeters) unless otherwise noted

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

TOSHIBA Photocoupler GaAIAs Ired \& Photo-IC

TLP250

Transistor Inverter

Inverter For Air Conditionor

IGBT Gate Drive

Power MOS FET Gate Drive

The TOSHIBA TLP250 consists of a GaAlAs light emitting diode and a integrated photodetector.
This unit is 8-lead DIP package.
TLP250 is suitable for gate driving circuit of IGBT or power MOS FET.

- Input threshold current: $\mathrm{IF}=5 \mathrm{~mA}$ (max.)
- Supply current (ICC): 11 mA (max.)
- Supply voltage (VCC): $10-35 \mathrm{~V}$
- Output current (IO): $\pm 1.5 \mathrm{~A}$ (max.)
- Switching time ($\mathrm{t}_{\mathrm{pLH}} / \mathrm{t}_{\mathrm{pHL}}$): $1.5 \mu \mathrm{~s}($ max. $)$
- Isolation voltage: $2500 \mathrm{~V}_{\mathrm{rms}}$ (min.)
- UL recognized: UL1577, file No.E67349
- Option (D4) type

VDE approved: DIN VDE0884/06.92,certificate No. 76823
Maximum operating insulation voltage: 630 VPK
Highest permissible over voltage: 4000VPK

Weight: 0.54 g
(Note) When a VDE0884 approved type is needed, please designate the "option (D4)"

- Creepage distance: 6.4 mm (min.)

Clearance: 6.4 mm (min.)

Schmatic

connected between pin 8 and 5 (See Note 5).

Pin Configuration (top view)

1 : N.C.
2 : Anode
3 : Cathode
4 : N.C.
5 : GND
6 : V_{O} (Output)
$7: V_{0}$
$8: V_{C C}$

Truth Table

		Tr1	Tr2
Input LED	On	On	Off
	Off	Off	On

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Characteristic			Symbol	Rating	Unit
불	Forward current		I_{F}	20	mA
	Forward current derating ($\mathrm{Ta} \geq 70^{\circ} \mathrm{C}$)		$\Delta \mathrm{I}_{\mathrm{F}} / \Delta \mathrm{Ta}$	-0.36	$\mathrm{mA} /{ }^{\circ} \mathrm{C}$
	Peak transient forward curent	(Note 1)	IFPT	1	A
	Reverse voltage		V_{R}	5	V
	Junction temperature		Tj	125	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \grave{0} \\ & \text { O} \\ & \text { © } \\ & 0 \end{aligned}$	"H"peak output current ($\mathrm{PW}^{\text {w }} \leq 2.5 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$)	(Note 2)	l OPH	-1.5	A
	"L"peak output current ($\mathrm{PW}^{2} \leq 2.5 \mu \mathrm{~s}, \mathrm{f} \leq 15 \mathrm{kHz}$) (Note 2)		IOPL	+1.5	A
	Output voltage	($\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$)	V_{O}	35	V
		$\left(\mathrm{Ta}=85^{\circ} \mathrm{C}\right)$		24	
	Supply voltage	$\left(\mathrm{Ta} \leq 70^{\circ} \mathrm{C}\right.$)	V_{CC}	35	V
		$\left(\mathrm{Ta}=85^{\circ} \mathrm{C}\right)$		24	
	Output voltage derating ($\mathrm{Ta} \geq 70^{\circ} \mathrm{C}$)		$\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{Ta}$	-0.73	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
	Supply voltage derating ($\mathrm{Ta} \geq 70^{\circ} \mathrm{C}$)		$\Delta \mathrm{V}_{\mathrm{CC}} / \Delta \mathrm{Ta}$	-0.73	$\mathrm{V} /{ }^{\circ} \mathrm{C}$
	Junction temperature		Tj	125	${ }^{\circ} \mathrm{C}$
Operating frequency		(Note 3)	f	25	kHz
Operating temperature range			$\mathrm{T}_{\text {opr }}$	-20~85	${ }^{\circ} \mathrm{C}$
Storage temperature range			$\mathrm{T}_{\text {stg }}$	-55~125	${ }^{\circ} \mathrm{C}$
Lead soldering temperature (10 s)		(Note 4)	Tsol	260	${ }^{\circ} \mathrm{C}$
Isolation voltage (AC, 1 min., R.H. $\leq 60 \%$)		(Note 5)	BV	2500	Vrms

Note 1: Pulse width $\mathrm{P}_{\mathrm{W}} \leq 1 \mu \mathrm{~s}, 300 \mathrm{pps}$
Note 2: Exporenential wavefom
Note 3: Exporenential wavefom, $\mathrm{I}_{\mathrm{OPH}} \leq-1.0 \mathrm{~A}(\leq 2.5 \mu \mathrm{~s})$, $\mathrm{IOPL} \leq+1.0 \mathrm{~A}(\leq 2.5 \mu \mathrm{~s})$
Note 4: It is 2 mm or more from a lead root.
Note 5: Device considerd a two terminal device: Pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.

Note 6: A ceramic capacitor $(0.1 \mu \mathrm{~F})$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching proparty. The total lead length between capacitor and coupler should not exceed 1 cm .

Recommended Operating Conditions

Characteristic	Symbol		Min.	Typ.	Max.	
Unit						
Input current, on	(Note 7)	$\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$	7	8	10	
Input voltage, off	$\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}$	0	-	0.8		VA
Supply voltage	V_{CC}	15	-	30	20	V
Peak output current	$\mathrm{I}_{\mathrm{OPH}} / \mathrm{I}_{\mathrm{OPL}}$	-	-	± 0.5		A
Operating temperature	$\mathrm{T}_{\mathrm{Opr}}$	-20	25	70	85	${ }^{\circ} \mathrm{C}$

Note 7: Input signal rise time (fall time) $<0.5 \mu \mathrm{~s}$.

Electrical Characteristics ($\mathrm{Ta}=\mathbf{- 2 0 \sim 7 0 ^ { \circ }} \mathbf{C}$, unless otherwise specified)

Characteristic		Symbol	Test Circuit	Test Condition		Min.	Typ.*	Max.	Unit
Input forward voltage		V_{F}	-	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{Ta}=25^{\circ} \mathrm{C}$			1.6	1.8	V
Temperature coefficient of forward voltage		$\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{Ta}$	-	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		-	-2.0	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Input reverse current		I_{R}	-	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$			-	10	$\mu \mathrm{A}$
Input capacitance		$\mathrm{C}_{\text {T }}$	-	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$		-	45	250	pF
Output current	"H" level	loph	3	$\underset{(* 1)}{V_{C c}=30 V}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{8-6}=4 \mathrm{~V} \end{aligned}$	-0.5	-1.5	-	A
	"L" level	IOPL	2		$\begin{array}{\|l} \hline \mathrm{I}_{\mathrm{F}}=0 \\ \mathrm{~V}_{6-5}=2.5 \mathrm{~V} \end{array}$	0.5	2	-	
Output voltage	"H" level	V_{OH}	4	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA} \end{aligned}$		11	12.8	-	V
	"L" level	VOL	5	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \mathrm{~V}_{\mathrm{F}}=0.8 \mathrm{~V} \end{aligned}$		-	-14.2	-12.5	
Supply current	"H" level	ICCH	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$		-	7	-	mA
				$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}$,	$=10 \mathrm{~mA}$	-	-	11	
	"L" level	$\mathrm{I}_{\text {CCL }}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$		-	7.5	-	
				$\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$		-	-	11	
Threshold input current	"Output $\mathrm{L} \rightarrow \mathrm{H}^{\prime \prime}$	$\mathrm{I}_{\text {FLH }}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=+15 \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE} 1}=-15 \mathrm{~V} \\ & \mathrm{p}>0 \mathrm{~V} \end{aligned}$	-	1.2	5	mA
Threshold input voltage	$\begin{aligned} & \text { "Output } \\ & \mathrm{H} \rightarrow L \text { " } \end{aligned}$	$\mathrm{I}_{\mathrm{FHL}}$	-	$\begin{aligned} & \mathrm{V}_{\mathrm{CC} 1}=+15 \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega, \end{aligned}$	$\begin{aligned} & V_{E E 1}=-15 V \\ & b<0 V \end{aligned}$	0.8	-	-	V
Supply voltage		V_{CC}	-			10	-	35	V
Capacitance (input-output)		C_{s}	-	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$		-	1.0	2.0	pF
Resistance(input-output)		R_{S}	-	$\begin{aligned} & V_{S}=500 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \text { R.H. } \leq 60 \% \end{aligned}$		1×10^{12}	10^{14}	-	Ω

* All typical values are at $\mathrm{Ta}=25^{\circ} \mathrm{C} \quad$ (*1): Duration of I_{O} time $\leq 50 \mu \mathrm{~s}$

Characteristic		Symbol	Test Circuit	Test Condition	Min.	Typ.*	Max.	Unit
Propagation delay time	$\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{t}_{\mathrm{pLH}}$	6	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA}(\text { Note } 7) \\ & \mathrm{V}_{\mathrm{CC} 1}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE} 1}=-15 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=200 \Omega \end{aligned}$	-	0.15	0.5	$\mu \mathrm{s}$
	$\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{t}_{\mathrm{pHL}}$			-	0.15	0.5	
Output rise time		t_{r}			-	-	-	
Output fall time		t_{f}			-	-	-	
Common mode transient immunity at high level output		C_{MH}	7	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=8 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	-5000	-	-	$\mathrm{V} / \mu \mathrm{s}$
Common mode transient immunity at low level output		C_{ML}	7	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=600 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	5000	-	-	$\mathrm{V} / \mu \mathrm{s}$

* All typical values are at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Note 7: Input signal rise time (fall time) $<0.5 \mu \mathrm{~s}$.

Test Circuit 1 :

Test Circuit 3 : IOPH

Test Circuit 2 : IOPL

Test Circuit 4 : VOH

Test Circuit 5 : V_{OL}

Test Circuit 6: $\mathrm{t}_{\mathrm{pLH}}, \mathrm{t}_{\mathrm{pHL}}, \mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$

Test Circuit 7: $\mathrm{C}_{\mathrm{MH}}, \mathrm{C}_{\mathrm{ML}}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{ML}}=\frac{480(\mathrm{~V})}{\mathrm{t}_{\mathrm{r}}(\mu \mathrm{~s})} \\
& \mathrm{C}_{\mathrm{MH}}=\frac{480(\mathrm{~V})}{\mathrm{t}_{\mathrm{f}(\mu \mathrm{~s})}}
\end{aligned}
$$

$\mathrm{C}_{\mathrm{ML}}\left(\mathrm{C}_{\mathrm{MH}}\right)$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.

Medium Power Linear Switching Applications

- Complementary to TIP120/121/122

PNP Epitaxial Darlington Transistor

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Value	Units
$\mathrm{V}_{\text {CBO }}$	Collector-Base Voltage $\begin{array}{ll}\text { : TIP125 } \\ & \text { TIP126 } \\ & \text { TIP127 }\end{array}$	-60	V
		- 80	V
		- 100	V
$\mathrm{V}_{\text {CEO }}$	Collector-Emitter Voltage :	-60	V
		- 80	V
		-100	V
$\mathrm{V}_{\text {EBO }}$	Emitter-Base Voltage	-5	V
I_{C}	Collector Current (DC)	-5	A
I_{CP}	Collector Current (Pulse)	-8	A
I_{B}	Base Current (DC)	-120	mA
P_{C}	Collector Dissipation ($\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$)	2	W
	Collector Dissipation ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	65	W
T_{J}	Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 ~ 150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
$\mathrm{V}_{\text {CEO }}$ (sus)	Collector-Emitter Sustaining Voltage : TIP125 TIP126 : TIP127	$\mathrm{I}_{\mathrm{C}}=-100 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$	$\begin{array}{r} -60 \\ -80 \\ -120 \end{array}$		$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$
$\mathrm{I}_{\text {CEO }}$	Collector Cut-off Current $:$ TIP125 TIP126 TIP127	$\begin{aligned} & V_{C E}=-30 \mathrm{~V}, I_{B}=0 \\ & V_{C E}=-40 \mathrm{~V}, I_{B}=0 \\ & V_{C E}=-50 \mathrm{~V}, I_{B}=0 \end{aligned}$		$\begin{aligned} & -2 \\ & -2 \\ & -2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {CBO }}$	Collector Cut-off Current $:$ TIP125 TIP126 TIP127	$\begin{aligned} & V_{C B}=-60 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=-80 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \\ & \mathrm{~V}_{\mathrm{CB}}=-100 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0 \end{aligned}$		$\begin{aligned} & -1 \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {ebo }}$	Emitter Cut-off Current	$\mathrm{V}_{\mathrm{BE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0$		-2	mA
h_{FE}	* DC Current Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CE}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$		
$\mathrm{V}_{\text {CE }}$ (sat)	* Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=-20 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & -2 \\ & -4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{BE} (on)	* Base-Emitter ON Voltage	$\mathrm{V}_{\mathrm{CE}}=-3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-3 \mathrm{~A}$		-2.5	V
$\mathrm{C}_{\text {ob }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CB}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}$		300	pF

Typical Characteristics

$\mathrm{I}_{\mathrm{c}}[\mathrm{A}]$, COLLECTOR CURRENT

Figure 1. DC current Gain

Figure 3. Output and Input Capacitance vs. Reverse Voltage

Figure 5. Power Derating

Figure 2. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 4. Safe Operating Area

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx ${ }^{\text {TM }}$	$\mathrm{FAST}^{\text {® }}$	OPTOPLANAR ${ }^{\text {™ }}$	STAR*POWER ${ }^{\text {™ }}$
Bottomless ${ }^{\text {TM }}$	FASTr ${ }^{\text {TM }}$	PACMAN ${ }^{\text {TM }}$	Stealth ${ }^{\text {TM }}$
CoolFET ${ }^{\text {TM }}$	FRFET ${ }^{\text {™ }}$	POP'M	SuperSOT ${ }^{\text {TM }}$-3
CROSSVOLT ${ }^{\text {TM }}$	GlobalOptoisolator ${ }^{\text {TM }}$	Power247 ${ }^{\text {тм }}$	SuperSOT ${ }^{\text {тм }}$-6
DenseTrench ${ }^{\text {TM }}$	GTO ${ }^{\text {™ }}$	PowerTrench ${ }^{\circledR}$	SuperSOT ${ }^{\text {тм }}$-8
DOME ${ }^{\text {™ }}$	$\mathrm{HiSeC}^{\text {тм }}$	QFET ${ }^{\text {TM }}$	SyncFET ${ }^{\text {TM }}$
EcoSPARK ${ }^{\text {™ }}$	ISOPLANAR ${ }^{\text {™ }}$	QS ${ }^{\text {™ }}$	TruTranslation ${ }^{\text {TM }}$
$\mathrm{E}^{2} \mathrm{CMOS}^{\text {¹ }}$	LittleFET ${ }^{\text {TM }}$	QT Optoelectronics ${ }^{\text {TM }}$	TinyLogic ${ }^{\text {™ }}$
EnSigna ${ }^{\text {TM }}$	MicroFET ${ }^{\text {TM }}$	Quiet Series ${ }^{\text {TM }}$	UHC ${ }^{\text {™ }}$
FACT ${ }^{\text {TM }}$	MICROWIRETM	SLIENT SWITCHER ${ }^{\text {® }}$	UltraFET ${ }^{\text {® }}$
FACT Quiet Series ${ }^{\text {™ }}$	OPTOLOGIC™	SMART START ${ }^{\text {TM }}$	VCX ${ }^{\text {™ }}$

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

