บทที่ 4 ผลการศึกษา

จากการฝึกสหกิจศึกษา ผู้ศึกษาสหกิจได้ดำเนินการศึกษาและเก็บรวบรวมข้อมูล ของ โครงการตามที่ได้กำหนดไว้ในขอบเขตการศึกษา โดยผู้ศึกษาสหกิจศึกษาได้ดำเนินตามขั้นตอน การศึกษาที่ประกอบไปด้วย การเก็บรวบรวมข้อมูล การสร้างโมเดลสามมิติและการถอดปริมาณ งาน การบันทึกข้อมูล และเปรียบเทียบความคลาดเคลื่อน ดำเนินงานดังนี้

4.1 การเก็บรวมรวมข้อมูล

4.1.1 เก็บรวบรวมข้อมูลแบบโครงสร้างสะพาน

เก็บรวบรวมข้อมูลแบบก่อสร้างสองมิติโรงสร้างสะพานจากผู้ออกแบบเพื่อใช้ในการสร้าง โมเดลสามิติ ซึ่งประกอบไปด้วย ข้อมูลเสาเข็มเจาะ ข้อมูลฐานราก ข้อมูลเสาตอม่อ และข้อมูล Segmental Box Girder ดังรูปที่ 4.1- 4.10

รูปที่ 4.1 แบบเสาเข็มเจาะเส้นผ่านศูนย์กลาง 1.5 เมตร

รูปที่ 4.3 แบบเสาตอม่อชนิด A1

รูปที่ 4.5 แบบเสาตอม่อชนิด B1

รูปที่ 4.6 แบบการเสริมเหล็กเสาตอม่อชนิด B1

รูปที่ 4.7 การเสริมเหล็ก Standard Segment

รูปที่ 4.8 แบบการเสริมเหล็กชิ้นส่วน Deviator D2A

รูปที่ 4.9 แบบการเสริมเหล็กชิ้นส่วน Deviator D3A

รูปที่ 4.10 แบบการเสริมเหล็ก Pire Segment

การเก็บรวมรวบข้อมูลแบบก่อสร้างสะพาน 2 มิติ เพื่อให้ผู้ศึกษาสหกิจศึกษาได้ทำความ เข้าใจอย่างถี่ถวนเป็นอย่างดี เพื่อให้การสร้างโมเดลสามมิติโครงสร้างสะพานถูกต้องตามแบบ ก่อสร้างและยังส่งผลให้การถอดปริมาณงานก่อสร้างของสะพานถูกต้องและแม่นยำมากขึ้น ตามลำดับทำให้เกิดความผิดพลาดของการวิจัยลดน้อยลงอีกด้วย

4.2 การสร้างโมเดลสามมิติและถอดปริมาณงาน

โปรแกรมสเก็ตอัพในปัจจุบันมีความสามารถที่จะสร้างโมเดลสิ่งต่างๆ ได้อย่างมีประสิทธิภาพ โดยใช้ Extension เสริมต่างๆ ในการสร้างโมเดลวัสดุก่อสร้าง ทำให้ผู้ออกแบบและผู้ก่อสร้างได้ มองเห็นภาพหน้างานก่อสร้าง ก่อให้เกิดความเข้าใจในโครงการและสามารถทำงานร่วมกันได้ตาม แบบแผนที่วางไว้ ในหลักของการสร้างโมเดลสามมิติและหลักของการถอดปริมาณงานของโครง สะพานหัวข้อนี้หลังจากผู้ศึกษาสหกิจศึกษาได้ทำความเข้าใจในแบบก่อสร้างสะพาน 2 มิติอย่าง ถี่ถวนเป็นอย่างดีผู้ศึกษาจะดำเนินการสร้างโมเดลสามมิติของโครงสร้างสะพานโดยใช้โปรแกรม สเก็ตอัพในการสร้างโมเดลสามมิติซึ่งประกอบไปด้วยเสาเข็ม ฐานราก เสาตอม่อ และ Segment Box Girder จากแบบสองมิติที่ผู้ศึกษาได้รวบรวมข้อมูลและทำการถอดปริมาณงานคอนกรีต เหล็กเสริม และไม้แบบจากโปรแกรมสเก็ตอัพ

4.2.1 การสร้างโมเดลสามมิติเสาเข็ม

การสร้างโมเดลสามมิติเสาเข็มผู้ศึกษาได้ใช้โปรแกรมสเก็ตอัพและเครื่องมือเสริม Pro file builder2.1 ในการสร้างโมเดลผู้ศึกษาได้ดำเนินการสร้างโมเดลสามมิติเสาเข็มของโครงสร้าง สะพานตามขั้นตอนการสร้างโมเดลของบทที่ 3 ซึ่งการสร้างโมเดลเสาเข็มจะประกอบไปด้วย คอนกรีต และเหล็กเสริมของเสาเข็มในตำแหน่งที่ P2L-P2R ถึง P11L-P11R โดย P2Lจะ หมายถึงตำแหน่ง P2 ของสะพานฝั่งด้านซ้ายและ P2R จะหมายถึงตำแหน่งที่ P2 ของสะพานฝั่ง ด้านขวา แสดงการสร้างโมเดลเสาเข็มดังรูปที่ 4.11 โมเดลสามมิติเสาเข็ม

รูปที่ 4.11 โมเดลสามมิติเสาเข็ม

จากรูปที่ 4.11 การสร้างโมเดลสามมิติของเสาเข็มเพื่อถอดปริมาณงาน ผู้ศึกษาได้ทำการ สร้างโมเดลเสาเข็มซึ่งประกอบไปด้วยคอนกรีต และเหล็กเสริมคอนกรีต ซึ่งในรูปกรอบสี่เหลี่ยมสี แดงจะแสดงถึงตำแหน่งของโมเดลที่ได้ดำเนินการสร้างเสาเข็มเริ่มจากตำแหน่ง P2L-P2R ถึง P11L-P11R ซึ่งในตำแหน่งที่ทำการสร้างโมเดลนั้นมีเสาเข็มที่มีเส้นผ่านศูนย์ขนาด 1.5 เมตร ความยาวของเสาเข็ม 30 เมตร ในตำแหน่งทางฝั่งด้านซ้ายมีจำนวน 40 ต้นและทางฝั่งด้านขวามี จำนวน 40 ต้น ซึ่งรวมทั้งที่อยู่ในแบบแปลนสะพานทั้งหมด 10 ตำแหน่ง มีจำนวนรวมทั้งหมด 80 ต้น

4.2.2 การถอดปริมาณงานเสาเข็ม

การถอดปริมาณงานเสาเข็ม ผู้ศึกษาได้ใช้เครื่องมือ Profile Builder2.1 เข้ามาช่วยใน การถอดปริมาณงานซึ่งเครื่องมือชนิดนนี้มีความสามารถในการถอดปริมาณงานเสาเข็มได้อย่าง รวดเร็ว และแม่นยำมากขึ้นซึ่งปริมาณของงานจะได้ตามที่ผู้เขียนโมเดลได้สร้างโมเดลไว้ถูก ประการเช่นความยาว และการกำหนดน้ำหนักของเหล็กแต่ละขนาด แสดงขั้นตอนการถอด ปริมาณงานไว้ดังรูปที่ 4.12 การถอดปริมาณงานเสาเข็ม

รูปที่ 4.12 การถอดปริมาณงานเสาเข็ม

จากรูปที่ 4.12 ในรูปนี้ได้แสดงตัวอย่างการถอดปริมาณงานเสาเข็มโดยใช้เครื่องมือเสริม Profile Builder2.1 โดยเริ่มจากเลือก Layer ชิ้นงานที่ต้องการถอดถอดปริมาณงานแล้วลาก คลุมเสาเข็มทั้งหมดเพื่อให้โปรแกรมทราบว่าต้องการส่วนไหนบ้าง แล้วใช้เครื่องมือเสริม Pro filebuilder2.1โดยใช้คำสั่งที่มีชื่อว่า PB Quantifier และดำเนินการใส่น้ำเหล็กต่อความยาว 1 เมตรของเหล็กตามขนาดของเหล็กทุกๆ Layer ที่ดังหมายเลขที่ (1) และใช้คำสั่งที่มีชื่อว่า Create Report เพื่อแสดงรายละเอียดของปริมาณงานที่ได้ดำเนินการถอดปริมาณงานดังหมายที่ (2) และสามารถบันทึกข้อมูลของปริมาณงานโดยใช้คำสั่ง CSV เพื่อส่งออกข้อมูลที่อยู่ในของ Excel ดังหมายเลขที่ (3)

4.2.3 การสร้างโมเดลสามมิติฐานราก

การสร้างโมเดลสามมิติฐานรากผู้ศึกษาได้ใช้โปรแกรมสเก็ตอัพและเครื่องมือเสริม Pro file builder2.1 ในการสร้างโมเดลผู้ศึกษาได้ดำเนินการสร้างโมเดลสามมิติเสาเข็มของโครงสร้าง สะพานตามขั้นตอนการสร้างโมเดลของบทที่ 3 ซึ่งการสร้างโมเดลฐานรากจะประกอบไปด้วย คอนกรีต เหล็กเสริมและไม้แบบของฐานรากในตำแหน่งที่ P2L-P2R ถึง P11L-P11R โดย P2Lจะ หมายถึงตำแหน่ง P2 ของสะพานฝั่งด้านซ้ายและ P2R จะหมายถึงตำแหน่งที่ P2 ของสะพานฝั่ง ด้านขวา แสดงการสร้างโมเดลฐานรากดังรูปที่ 4.13 โมเดลสามมิติฐานราก

รูปที่ 4.13 โมเดลสามมิติฐานราก

จากรูปที่ 4.13 การสร้างโมเดลสามมิติของฐานรากเพื่อถอดปริมาณงาน ผู้ศึกษาได้ทำการ สร้างโมเดลฐานรากซึ่งประกอบไปด้วยคอนกรีต และเหล็กเสริมคอนกรีต ซึ่งในรูปกรอบสี่เหลี่ยมสี แดงจะแสดงถึงตำแหน่งของโมเดลที่ได้ดำเนินการสร้างฐานรากเริ่มจากตำแหน่ง P2L-P2R ถึง P11L-P11R ซึ่งในตำแหน่งที่ทำการสร้างโมเดลนั้นมีฐานรากที่มีขนาดความกว้าง 7.5 เมตร ความ ยาว 7.5 เมตร และความหนา 2.25 เมตรในตำแหน่งทางฝั่งด้านซ้ายมีจำนวน 10 ตัวและทางฝั่ง ด้านขวามีจำนวน 10 ตัว ซึ่งรวมทั้งที่อยู่ในแบบแปลนสะพานทั้งหมด 10 ตำแหน่ง มีจำนวนรวม ทั้งหมด 20 ตัว

4.2.4 การถอดปริมาณงานฐานราก

การถอดปริมาณงานฐานราก ผู้ศึกษาได้ใช้เครื่องมือ Profile Builder2.1 เข้ามาช่วยใน การถอดปริมาณงานซึ่งเครื่องมือชนิดนนี้มีความสามารถในการถอดปริมาณงานฐานรากได้อย่าง รวดเร็ว และแม่นยำมากขึ้นซึ่งปริมาณของงานจะได้ตามที่ผู้เขียนโมเดลได้สร้างโมเดลไว้ถูก ประการเช่นความยาว และการกำหนดน้ำหนักของเหล็กแต่ละขนาด แสดงขั้นตอนการถอด ปริมาณงานไว้ดังรูปที่ 4.14 การถอดปริมาณงานฐานราก

รูปที่ 4.14 การถอดปริมาณงานฐานราก

จากรูปที่ 4.14 ในรูปนี้ได้แสดงตัวอย่างการถอดปริมาณงานเสาเข็มโดยใช้เครื่องมือเสริม Profile Builder2.1 โดยเริ่มจากเลือก Layer ชิ้นงานที่ต้องการถอดถอดปริมาณงานแล้วลาก คลุมฐานรากทั้งหมดเพื่อให้โปรแกรมทราบว่าต้องการส่วนไหนบ้าง แล้วใช้เครื่องมือเสริม Pro filebuilder2.1โดยใช้คำสั่งที่มีชื่อว่า PB Quantifier และดำเนินการใส่น้ำเหล็กต่อความยาว 1 เมตรของเหล็กตามขนาดของเหล็กทุกๆ Layer ที่ดังหมายเลขที่ (1) และใช้คำสั่งที่มีชื่อว่า Create Report เพื่อแสดงรายละเอียดของปริมาณงานที่ได้ดำเนินการถอดปริมาณงานดังหมายที่ (2) และสามารถบันทึกข้อมูลของปริมาณงานโดยใช้คำสั่ง CSV เพื่อส่งออกข้อมูลที่อยู่ในของ Excel ดังหมายเลขที่ (3) 4.2.5 การสร้างโมเดลสามมิติเสาตอม่อ

การสร้างโมเดลสามมิติฐานรากผู้ศึกษาได้ใช้โปรแกรมสเก็ตอัพและเครื่องมือเสริม Pro file builder2.1 ในการสร้างโมเดลผู้ศึกษาได้ดำเนินการสร้างโมเดลสามมิติเสาตอม่อของ โครงสร้างสะพานตามขั้นตอนการสร้างโมเดลของบทที่ 3 ซึ่งการสร้างโมเดลเสาตอม่อจะประกอบ ไปด้วยคอนกรีต เหล็กเสริมและไม้แบบของเสาตอม่อในตำแหน่งที่ P2L-P2R ถึง P11L-P11R โดย P2Lจะหมายถึงตำแหน่ง P2 ของสะพานฝั่งด้านซ้ายและ P2R จะหมายถึงตำแหน่งที่ P2 ของสะพานฝั่งด้านขวา แสดงการสร้างโมเดลเสาตอม่อดังรูปที่ 4.15 โมเดลสามมิติเสาตอม่อ

รูปที่ 4.15 โมเดลสามมิติเสาตอม่อ

จากรูปที่ 4.15 การสร้างโมเดลสามมิติของเสาตอม่อเพื่อถอดปริมาณงาน ผู้ศึกษาได้ทำ การสร้างโมเดลเสาตอม่อจำนวน 2 ชนิดประกอบไปด้วยคอนกรีต และเหล็กเสริมคอนกรีต ซึ่งใน รูปกรอบสี่เหลี่ยมสีแดงจะแสดงถึงตำแหน่งของชนิด A1 และรูปกรอบสี่เหลี่ยมสีน้ำเงินจะแสดงถึง ตำแหน่งของชนิด B1 การสร้างเสาตอม่อเริ่มจากตำแหน่ง P2L-P2R ถึง P11L-P11R ซึ่งใน ตำแหน่ง P2 สูง 2.84 เมตร P3 สูง 4.42 เมตร P4 สูง 6.01 เมตร P5 สูง 7.33 เมตร P6 สูง 7.93 เมตร P7 สูง 7.82 เมตร P8 สูง 7.01 เมตร P9 สูง 5.538 เมตร P10 สูง 3.94 เมตร แล P11 สูง 2.34 เมตร รวมทั้งที่อยู่ในแบบแปลนสะพานทั้งหมด 10 ตำแหน่งมีจำนวนรวมทั้งหมด 20 ตัว 4.2.6 การถอดปริมาณงานเสาตอม่อ

การถอดปริมาณงานตอม่อ ผู้ศึกษาได้ใช้เครื่องมือ Profile Builder2.1 เข้ามาช่วยในการ ถอดปริมาณงานซึ่งเครื่องมือชนิดนนี้มีความสามารถในการถอดปริมาณงานตอม่อ ได้อย่างรวดเร็ว และแม่นยำมากขึ้นซึ่งปริมาณของงานจะได้ตามที่ผู้เขียนโมเดลได้สร้างโมเดลไว้ถูกประการเช่น ความยาว และการกำหนดน้ำหนักของเหล็กแต่ละขนาด แสดงขั้นตอนการถอดปริมาณงานไว้ดัง รูปที่ 4.16 การถอดปริมาณงานตอม่อ

รูปที่ 4.16 การถอดปริมาณงานเสาตอม่อ

จากรูปที่ 4.16 ในรูปนี้ได้แสดงตัวอย่างการถอดปริมาณงานเสาตอม่อชนิด A1 โดยใช้ เครื่องมือเสริม Profile Builder2.1 โดยเริ่มจากเลือก Layer ชิ้นงานที่ต้องการถอดถอดปริมาณ งานแล้วลากคลุมเสาเข็มทั้งหมดเพื่อให้โปรแกรมทราบว่าต้องการส่วนไหนบ้าง แล้วใช้เครื่องมือ เสริม Pro filebuilder2.1 โดยใช้คำสั่งที่มีชื่อว่า PB Quantifier และดำเนินการใส่น้ำเหล็กต่อ ความยาว 1 เมตรของเหล็กตามขนาดของเหล็กทุกๆ Layer ที่ดังหมายเลขที่ (1) และใช้คำสั่งที่มี ชื่อว่า Create Report เพื่อแสดงรายละเอียดของปริมาณงานที่ได้ดำเนินการถอดปริมาณงาน หมายที่ (2) และสามารถบันทึกข้อมูลของปริมาณงานโดยใช้คำสั่ง CSV เพื่อส่งออกข้อมูลที่อยู่ใน ของ Excel ดังหมายเลขที่ (3) 4.2.7 การสร้างโมเดลสามมิติSegment Box Girder

การสร้างโมเดลสามมิติSegment Box Girderผู้ศึกษาได้ใช้โปรแกรมสเก็ตอัพและ เครื่องมือเสริม Pro file builder2.1 ในการสร้างโมเดลผู้ศึกษาได้ดำเนินการสร้างโมเดล โครงสร้างสะพานตามขั้นตอนของบทที่3 ซึ่งการสร้างโมเดลประกอบไปด้วยคอนกรีต และเหล็ก เสริมของ Segment Box Girderในตำแหน่งที่ P2L-P2R ถึง P11L-P11R โดย P2Lจะหมายถึง ตำแหน่ง P2 ของสะพานฝั่งด้านซ้ายและ P2R จะหมายถึงตำแหน่งที่ P2 ของสะพานฝั่งด้านขวา แสดงการสร้างโมเดลSegment Box Girder ดังรูปที่ 4.17 การสร้างโมเดลSegment Box Girder

รูปที่ 4.17 การสร้างโมเดลSegment Box Girder

จากรูปที่ 4.17 การสร้างโมเดลสามมิติของ Segment Box Girder ผู้ศึกษาได้ทำการ สร้างโมเดล Segment Box Girder ซึ่งประกอบไปด้วยคอนกรีต และเหล็กเสริมคอนกรีตซึ่งในรูป กรอบสี่เหลี่ยมสีแดงแสดงถึงตำแหน่งของชิ้นส่วนStandard กรอบสี่เหลี่ยมสีเหลืองแสดงถึง ตำแหน่งของชิ้นส่วน D2a กรอบสี่เหลี่ยมสีเขียวแสดงถึงตำแหน่งของชิ้นส่วน D3a กรอบสี่เหลี่ยม สีน้ำเงินแสดงถึงตำแหน่งของชิ้นส่วน Pier จากรูปแสดงตัวอย่างตำแหน่งที่ P2L-P3L 4.2.8 การถอดปริมาณงาน Segment Box Girder

การถอดปริมาณงาน Segment Box Girder ผู้ศึกษาได้ใช้เครื่องมือ Profile Builder2.1 เข้ามาช่วยในการถอดปริมาณงานซึ่งเครื่องมือชนิดนนี้มีความสามารถในการถอดปริมาณคอนกรีต เหล็กเสริมคอนกรีตได้อย่างรวดเร็วและแม่นยำมากขึ้น ซึ่งปริมาณของงานจะได้ตามที่ผู้เขียน โมเดลได้สร้างโมเดลไว้ถูกประการเช่นความยาว และการกำหนดน้ำหนักของเหล็กแต่ละขนาด แสดงขั้นตอนการถอดปริมาณงานไว้ดังรูปที่ 4.18 การถอดปริมาณงาน Segment Box Girde

รูปที่ 4.18 การถอดปริมาณงาน Segment Box Girde

จากรูปที่ 4.12 ในรูปนี้ได้แสดงตัวอย่างการถอดปริมาณงาน Standard Segment โดย ใช้เครื่องมือเสริม Profile Builder2.1 โดยเริ่มจากเลือก Layer ขึ้นงานที่ต้องการถอดถอด ปริมาณงานแล้วลากคลุมเสาเข็มทั้งหมดเพื่อให้โปรแกรมทราบว่าต้องการส่วนไหนบ้าง แล้วใช้ เครื่องมือเสริม Pro filebuilder2.1โดยใช้คำสั่งที่มีชื่อว่า PB Quantifier และดำเนินการใส่น้ำ เหล็กต่อความยาว 1 เมตรของเหล็กตามขนาดของเหล็กทุกๆ Layer ที่ดังหมายเลขที่ (1) และใช้ คำสั่งที่มีชื่อว่า Create Report เพื่อแสดงรายละเอียดของปริมาณงานที่ได้ดำเนินการถอด ปริมาณงานดังหมายที่ (2) และสามารถบันทึกข้อมูลของปริมาณงานโดยใช้คำสั่ง CSV เพื่อส่งออก ข้อมูลที่อยู่ในของ Excel ดังหมายเลขที่ (3)

4.3 บันทึกปริมาณงานโครงสร้างสะพาน

ในหัวข้อนี้ผู้ศึกษาสหกิจศึกษาได้ดำเนินการบันทึกปริมาณงานจากการถอดปริมาณงานโมเดล สามมิติจากโปรแกรมสเก็ตอัพโดยใช้เครื่องมือเสริม Profile Builder2.1 ที่ประกอบไปด้วย เสาเข็ม ฐานราก เสาตอม่อ และ Segment Box Girder เพื่อสรุปปริมาณงานทั้งหมดชองแต่ละรายการ

4.3.1 การบันทึกปริมาณงานของเสาเข็ม

การบันทึกปริมาณงานจากการถอดปริมาณงานของโปรแกรมสเก็ตอัพจากการใช้เครื่องมือ เสริม Profile Builder2.1 โดยมีวิธีการบันทึกปริมาณงานลงในตารางแบ่งเป็น ช่องที่ (1) รายการ ช่องที่ (2) จำนวนชิ้นงาน ช่องที่ (3) ตำแหน่งของชิ้นงาน ช่องที่ (4) ปริมาณคอนกรีต ช่องที่ (5) เหล็ก เสริมคอนกรีต ซึ่งจะเก็บรวบรวมข้อมูลของปริมาณงานของโมเดลสามมิติเสาเข็มได้แสดงไว้ดังตารางที่ 4.1 ตารางบันทึกปริมาณงานเสาเข็ม

รายการ	จำนวน	ตำแหน่ง	คอนกรีต (m ³)	เหล็กเสริมคอนกรีต (kg)				
(1)	(2)	(3)	(4)	(5)				
เสาเข็ม (m)				DB12	DB16	DB20	DB25	DB32
Ø1.5	8	P2L-P2R	421	4,676	-	-	-	42,400
Ø1.5	8	P3L-P3R	421	4,676	-	-	-	42,400
Ø1.5	8	P4L-P4R	421	4,676	-	-	-	42,400
Ø1.5	8	P5L-P5R	421	4,676	-	-	I	42,400
Ø1.5	8	P6L-P6R	421	4,676	-	-	-	42,400
Ø1.5	8	P7L-P7R	421	4,676	-	-	-	42,400
Ø1.5	8	P8L-P8R	421	4,676	-	-	-	42,400
Ø1.5	8	P9L-P9R	421	4,676	-	-	-	42,400
Ø1.5	8	P10L-P10R	421	4,676	-	-	-	42,400
Ø1.5	8	P11L-P11R	421	4,676	-	-	-	42,400
	รวม		4,206		-	-	-	424,000

ตารางที่ 4.1 ตารางบันทึกปริมาณงานเสาเข็ม

จากตารางที่ 4.1 ตารางบันทึกปริมาณงานเสาเข็ม ผู้ศึกษาได้ดำเนินการรวบรวมปริมาณงาน เสาเข็มมีปริมาณตัวอย่างขนาดเส้นผ่านศูนย์ 1.5 เมตร จำนวนทั้งหมด 80 ต้น จากตำแหน่งที่ P2L-P2R ถึง P11L-P11R รวมปริมาณคอนกรีตเท่ากับ 4,206 ลูกบากศ์เมตร เหล็กเสริม DB12 เท่ากับ 46,758 กิโลกรัม เหล็กเสริมDB 32 เท่ากับ 424,000 กิโลกรัม

4.3.2 การบันทึกปริมาณงานของฐานราก

การบันทึกปริมาณงานจากการถอดปริมาณงานของโปรแกรมสเก็ตอัพจากการใช้เครื่องมือ เสริม Profile Builder2.1 โดยมีวิธีการบันทึกปริมาณงานลงในตารางแบ่งเป็น ช่องที่ (1)รายการ ช่องที่ (2) จำนวนชิ้นงาน ช่องที่ (3) ตำแหน่งของชิ้นงาน ช่องที่ (4) ปริมาณคอนกรีต ช่องที่ (5) เหล็ก เสริมคอนกรีตและช่องที่ (6) ไม้แบบ ซึ่งจะเก็บรวบรวมข้อมูลของปริมาณงานของโมเดลสามมิติฐาน รากได้แสดงดังตารางที่ 4.2 ตารางบันทึกปริมาณงานฐานราก

รายการ	จำนวน	ตำแหน่ง	คอนกรีต (m ³)	เหล็กเสริมคอนกรีต (kg)			ไม้แบบ (mิ)
(1)	(2)	(3)	(4)		(5)		(6)
				DB16	DB25	DB32	
ฐานราก	2	P2	253	3,392	5,698	18,678	135
ฐานราก	2	P3	253	3,392	5,698	18,678	135
ฐานราก	2	P4	253	3,392	5,698	18,678	135
ฐานราก	2	P5	253	3,392	5,698	18,678	135
ฐานราก	2	P6	253	3,392	5,698	18,678	135
ฐานราก	2	Ρ7	253	3,392	5,698	18,678	135
ฐานราก	2	P8	253	3,392	5,698	18,678	135
ฐานราก	2	P9	253	3,392	5,698	18,678	135
ฐานราก	2	P10	253	3,392	5,698	18,678	135
ฐานราก	2	P11	253	3,392	5,698	18,678	135
	รวม		2,531	33,916	56,980	186,776	1,350

ตารางที่ 4.2 ตารางบันทึกปริมาณงานฐานราก

จากตารางที่ 4.2 ตารางบันทึกปริมาณงานฐานราก ผู้ศึกษาได้ดำเนินการรวบรวมปริมาณงาน ฐานราก ขนาด 7.5x7.5x2.25 เมตร จากตำแหน่งที่ P2L-P2R ถึง P11L-P11R ตำแหน่งละ 1 ตัว รวม จำนวนทั้งหมด 20 ตัว และผู้ศึกษาได้ดำเนินการรวมปริมาณคอนกรีตเท่ากับ 2,531 ลูกบากศ์ เมตร เหล็กเสริม DB16 เท่ากับ 33,916 กิโลกรัม เหล็กเสริม DB 25 เท่ากับ 56,980 กิโลกรัมเหล็ก เสริม DB 25 เท่ากับ 186,776 กิโลกรัม ไม้แบบ 1,350 ตารางเมตร

4.3.3 การบันทึกปริมาณงานของเสาตอม่อ

การบันทึกปริมาณงานจากการถอดปริมาณงานของโปรแกรมสเก็ตอัพจากการใช้เครื่องมือ เสริม Profile Builder2.1 โดยมีวิธีการบันทึกปริมาณงานลงในตารางแบ่งเป็น ช่องที่ (1) รายการ ช่องที่ (2) จำนวนชิ้นงาน ช่องที่ (3) ตำแหน่งของชิ้นงาน ช่องที่ (4) ปริมาณคอนกรีต ช่องที่ (5) เหล็ก เสริมคอนกรีตและช่องที่ (6) ไม้แบบ ซึ่งจะเก็บรวบรวมข้อมูลของปริมาณงานของโมเดลสามมิติเสา ตอม่อได้แสดงดังตารางที่ 4.3 ตารางบันทึกปริมาณงานเสาตอม่อ

รายการ	จำนวน	ตำแหน่ง	คอนกรีต (m ³)		เหล็กเสริมคอนกรีต (kg)				ไม้แบบ (m)
(1)	(2)	(3)	(4)			(5)			(6)
				DB12	DB16	DB20	DB25	DB32	
A1	2	P2	16	527	308	-	290	3,019	37
A1	2	P3	25	791	308	-	290	3,865	58
A1	2	P4	33	1,054	308	-	290	4,425	79
A1	2	P5	41	1,292	308	-	290	4,888	96
B1	2	P6	68	1,820	1,102	1,274	-	5,506	171
A1	2	Ρ7	43	1,820	308	-	290	5,483	103
A1	2	P8	39	1,239	308	-	290	5,197	92
A1	2	P9	31	975	308	-	290	4,578	73
A1	2	P10	22	685	308	-	290	3,604	52
A1	2	P11	13	422	308	-	290	2,750	31
	รวม		330	10,625	3,870	1,274	2,607	43,316	792

ตารางที่ 4.3 ตารางบันทึกปริมาณงานเสาตอม่อ

จากตารางที่ 4.3 ตารางบันทึกปริมาณงานฐานราก ผู้ศึกษาได้ดำเนินการรวบรวมปริมาณงาน รวบรวมปริมาณงานเสาตอม่อชนิดA1 และB1 จำนวนทั้งหมด 20 ต้น จากตำแหน่งที่ P2L-P2R ถึง P11L-P11R รวมปริมาณคอนกรีตเท่ากับ 330 ลูกบากศ์เมตร เมตร เหล็กเสริม DB12 เท่ากับ 10,625 กิโลกรัม เหล็กเสริม DB16 เท่ากับ 3,870 กิโลกรัม เหล็กเสริม DB 20 เท่ากับ 1,274กิโลกรัม เหล็กเสริม DB 25 เท่ากับ 2,607 กิโลกรัม เหล็กเสริม DB 32 เท่ากับ 43,316 กิโลกรัม ไม้แบบ 792 ตารางเมตร 4.3.4 การบันทึกปริมาณงานของ Segment Box girder

การบันทึกปริมาณงานจากการถอดปริมาณงานของโปรแกรมสเก็ตอัพจากการใช้เครื่องมือ เสริม Profile Builder2.1 โดยมีวิธีการบันทึกปริมาณงานลงในตารางแบ่งเป็น ช่องที่ (1) รายการ ช่องที่ (2) จำนวนชิ้นงาน ช่องที่ (3) ตำแหน่งของชิ้นงาน ช่องที่ (4) ปริมาณคอนกรีต ช่องที่ (5) เหล็ก เสริมคอนกรีต ซึ่งเก็บรวบรวมข้อมูลได้แสดงดังตารางที่ 4.4 ตารางบันทึกปริมาณงาน Segment Box girder

รายการ	จำนวน	ตำแหน่ง	คอนกรีต (m ³)	เหล็กเสริมคอนกรีต (kg)			
(1)	(2)	(3)	(4)	(5)			
				DB12	DB16	DB20	DB25
Standard	18	P2	31	21,698	4,921	-	15,530
Standard	18	P3	31	21,698	4,921	-	15,530
Standard	18	P4	31	21,698	4,921	-	15,530
Standard	18	P5	31	21,698	4,921	-	15,530
Standard	18	P6	31	21,698	4,921	-	15,530
Standard	18	P7	31	21,698	4,921	-	15,530
Standard	18	P8	31	21,698	4,921	-	15,530
Standard	18	Р9	31	21,698	4,921	-	15,530
Standard	18	P10	31	21,698	4,921	-	15,530
Deviatoe D2a	4	P2	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	Р3	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	P4	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	P5	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	P6	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	Ρ7	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	P8	69	4,998	1,227	2,817	3,448
Deviatoe D2a	4	Р9	69	4,998	1,227	2,817	3,448

ตารางที่ 4.4 ตารางบันทึกปริมาณงาน Segment Box girder

รายการ	จำนวน	ตำแหน่ง	คอนกรีต (m ³)	เหล็กเสริมคอนกรีต (kg)			
(1)	(2)	(3)	(4)		(5)		
				DB12	DB16	DB20	DB25
Deviatoe D3a	4	Ρ7	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	Ρ3	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	P4	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	P5	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	P6	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	P8	69	4,986	1,210	3,769	3,451
Deviatoe D3a	4	Р9	69	4,986	1,210	3,769	3,451
Pire	2	P2	35	538	1,305	1,454	407
Pire	2	P3	35	538	1,305	1,339	407
Pire	2	P4	35	538	1,305	1,339	407
Pire	2	P5	35	538	1,305	1,339	407
Pire	2	P6	35	538	1,305	1,339	407
Pire	2	Ρ7	35	538	1,305	1,339	407
Pire	2	P8	35	538	1,305	1,339	407
Pire	2	P9	35	538	1,305	1,339	407
Pire	2	P10	35	538	1,305	1,339	407
Pire	2	P2	35	538	1,305	1,339	407

ตารางที่ 4.4 (ต่อ) ตารางบันทึกปริมาณงาน Segment Box girder

จากตารางที่ 4.4 ตารางบันทึกปริมาณงาน Segment Box girder การรวบรวมปริมาณงาน Segment Box girder นั่นจะประกอบไปด้วยชนิด Standard Segment ชนิด Deviator D2A ชนิด Deviator D3A และชนิด Pier Segment จากตำแหน่งที่ P2L-P2R ถึง P11L-P11R รวมปริมาณ คอนกรีตเท่ากับ 2,221 ลูกบากศ์เมตร เมตร เหล็กเสริม DB12 เท่ากับ 295,889 กิโลกรัม เหล็กเสริม DB16 เท่ากับ 92,319 กิโลกรัม เหล็กเสริม DB 20 เท่ากับ 86,289 กิโลกรัม เหล็กเสริม DB 25 เท่ากับ 209,992 กิโลกรัม

4.4 เปรียบเทียบความคลาดเคลื่อน

ในหัวข้อนี้ผู้ศึกษาสหกิจศึกษาได้ดำเนินการเปรียบเทียบปริมาณงานโครงสร้างสะพาน จากโปรแกรมสเก็ตอัพโดยใช้ค่าสัมบูรณ์ของเปอร์เซ็นต์ความคลาดเคลื่อน (APE) เพื่อหาความ คลาดเคลื่อนเพื่อเปรียบของแต่ละรายการและหาค่ากลางของเปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ (MAPE) เพื่อหาความเคลื่อนเฉลี่ยโดยรวมของแต่ละชนิดของชิ้นงาน

4.4.1 การเปรียบเทียบค่าความคลาดเคลื่อนคอนกรีตและเหล็กเสริมของปริมาณงานของ เสาเข็มเจาะแสดงดังตารางที่ 4.5 ตารางการหาค่าคลาดเคลื่อนของเสาเข็ม

รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	4241.15	4,206.00	0.82			
DB12	50663.82	46,758.00	7.70			
DB32	424,032.00	424,000.00	0.01			
MAPE = 2.81 %						

ตารางที่ 4.5 ตารางการหาค่าคลาดเคลื่อนของเสาเข็ม

4.2.2 การเปรียบเทียบค่าความคลาดเคลื่อนคอนกรีต ไม้แบบ และเหล็กเสริมของปริมาณ งานฐานรากแสดงดังตารางที่ 4.6 ตารางการหาค่าคลาดเคลื่อนของฐานราก

ฐานราก P2-P11						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	2,531.25	2,531.25	0.00			
ไม้แบบ	1,350.00	1,350.00	0.00			
DB16	34,560.00	33,916.40	1.86			
DB25	57,040.00	56,980.00	0.10			
DB32	186,880.00	186,776	0.05			
MAPE = 0.40%						

ตารางที่ 4.6 ตารางการหาค่าคลาดเคลื่อนของฐานราก

4.2.3 การเปรียบเทียบค่าความคลาดเคลื่อนคอนกรีต ไม้แบบ และเหล็กเสริมของงานตอม่อ ตำแหน่งที่ P2L-P2R ถึง P11L-P11R แสดงดังตารางที่ 4.7-4.2

ตอม่อ P2L-P2R						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	15.91	15.78	0.82			
ไม้แบบ	37.31	37.44	2.00			
DB12	534.00	527.16	1.28			
DB16	316.00	307.62	2.65			
DB25	302.00	289.66	4.09			
DB32	3,106.00	3,019.16	2.80			
MAPE = 2.27 %						

ตารางที่ 4.7 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P2L-P2R

ตารางที่ 4.8 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P3L-P3R

ตอม่อ P3L-P3R						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	23.16	24.54	5.96			
ไม้แบบ	58.05	58.10	0.08			
DB12	816.00	790.72	3.10			
DB16	316.00	307.62	2.65			
DB25	302.00	289.66	4.09			
DB32	3,984.00	3,865.48	2.97			
MAPE = 3.1 %						

ตารางที่ 4.9 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P4L-P4R

ตอม่อ P4L-P4R						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	30.09	33.44	11.13			
ไม้แบบ	79.08	79.06	0.02			
DB12	1,106.00	1,054.30	4.67			
DB16	316.00	307.62	2.65			
DB25	302.00	289.66	4.09			
DB32	4,432.67	4,425.46	0.16			
MAPE = 3.79 %						

ตอม่อ P5L-P5R						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	36.00	40.70	13.06			
ไม้แบบ	91.85	96.20	4.73			
DB12	1,316.00	1,291.50	1.86			
DB16	316.00	307.62	2.65			
DB25	302.00	289.66	4.09			
DB32	4,896.67	4,887.92	0.18			
MAPE = 4.43 %						

ตารางที่ 4.10 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P5L-P5R

ตารางที่ 4.11 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P6L-P6R

ตอม่อ P6L-P6R						
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %			
คอนกรีต	61.66	67.98	10.25			
ไม้แบบ	174.00	171.42	1.48			
DB12	1,883.16	1,820.32	3.34			
DB16	1,168.00	1,101.80	5.67			
DB20	1,246.00	1,274.10	2.26			
DB32	5,378.67	5,505.72	2.36			
	MAPE = 5.76 %					

ตารางที่ 4.12 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P7L-P7R

ตอม่อ P7L-P7R			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	38.00	43.46	14.37
ไม้แบบ	102.77	102.70	0.06
DB12	1,422.00	1,396.94	1.76
DB16	316.00	307.62	2.65
DB25	302.00	289.66	4.09
DB32	5,506.00	5,482.96	0.42
MAPE = 3.89 %			

ตอม่อ P8L-P8R			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	34.34	38.92	13.34
ไม้แบบ	92.05	92.02	0.03
DB12	1,264.00	1,238.78	2.00
DB16	316.00	307.62	2.65
DB25	302.00	289.66	4.09
DB32	5,218.00	5,197.22	0.40
MAPE = 3.75 %			

ตารางที่ 4.13 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P8L-P8R

ตารางที่ 4.14 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P9L-P9R

ตอม่อ P9L-P9R			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	28.03	30.76	9.74
ไม้แบบ	72.75	72.76	0.01
DB12	1,000.00	975.22	2.48
DB16	316.00	307.62	2.65
DB25	302.00	289.66	4.09
DB32	4,606.00	4,577.60	0.62
MAPE = 3.27 %			

ตารางที่ 4.15 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P10L-P10R

ตอม่อ P10L-P10R			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	21.02	21.88	4.09
ไม้แบบ	51.73	51.80	0.14
DB12	738.00	685.28	7.14
DB16	316.00	307.62	2.65
DB25	302.00	289.66	4.09
DB32	3,718.00	3,604.46	3.05
MAPE = 3.27 %			

ตอม่อ P11L-P11R			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	13.43	12.98	3.38
ไม้แบบ	30.70	30.88	0.58
DB12	454.00	421.70	7.11
DB16	316.00	307.62	2.65
DB25	302.00	289.66	4.09
DB32	2,828.00	2,749.82	2.76
MAPE = 3.4 %			

ตารางที่ 4.16 ตารางการหาค่าคลาดเคลื่อนของเสาตอม่อ P11L-P11R

4.4.3 การเปรียบเทียบค่าความคลาดเคลื่อนคอนกรีตและเหล็กเสริมของปริมาณงาน Segment Box Girder ตำแหน่งที่ P2L-P2R ถึง P11L-P11R ดังตารางที่4.17-4.

ตารา.พี่ / 17	ตารางการหาด่าดลาดเดลื่องเของ	Standard	Sogmont
WI19 IN VI 4.17		Stanuaru	Segment

Standard Segment P2-P11			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	282.96	282.96	0.00
DB12	197,618.87	195,285.17	1.18
DB16	43,186.93	44,292.42	2.56
DB25	139,883.43	139,767.12	0.08
MAPE = 0.95 %			

ตารางที่ 4.18 ตารางการหาค่าคลาดเคลื่อนของ Deviator Segment D2a

Deviator Segment D2a P2-P11			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	619.20	619.20	0.00
DB12	45433.65	44,980.20	1.00
DB16	10706.00	11,040.84	3.13
DB20	24,968.00	25,350.84	1.53
DB25	31,032.00	31,032.00	0.00
MAPE = 1.13 %			

Deviator Segment D3a P2-P11			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	619.20	619.20	0.00
DB12	45,741.00	44,872.92	1.90
DB16	11,014.00	10,887.12	1.15
DB20	32,758.20	33,921.72	3.55
DB25	31,055.76	31,055.76	0.00
MAPE = 1.32 %			

ตารางที่ 4.19 ตารางการหาค่าคลาดเคลื่อนของ Deviator Segment D3a

ตารางที่ 4.20 ตารางการหาค่าคลาดเคลื่อนของ Pier Segment

Pire Segment P2-P11			
รายการ	ปริมาณตามตัวอย่าง	ปริมาณจากสเก็ตอัพ	APE %
คอนกรีต	352.00	352.00	0.00
DB12	4,984.64	5,040.00	1.11
DB16	13,653.00	13,049.20	4.42
DB20	15,846.00	13,508.12	14.75
DB25	4,228.64	4,068.80	3.78
MAPE = 4.8 %			

4.3 สรุปท้ายบท

จาการดำเนินการสร้างโมเดล 3 มิติโครงสร้างสะพานจากตำแหน่งที่ P2L-P2R ถึง P11L-P11R เปรียบเทียบปริมาณจากโปรแกรมสเก็ตอัพกับปริมาณงานจากการคำนวณแบบ BOQ โดยใช้ สมการค่าสัมบูรณ์ของเปอร์เซ็นต์ความคลาดเคลื่อนและค่ากลางของเปอร์เซ็นต์ความคลาดเคลื่อน สัมบูรณ์ได้สรุปปริมาณความเคลื่อนดังตารางที่ 4.36 – 4.37

รายการ	ตำแหน่ง	ค่ากลางคลาดเคลื่อน %
เสาเข็มเจาะ	P2L-P2R ถึง P11L-P11R	2.57
ฐานราก	P2L-P2R ถึง P11L-P11R	0.40
เสาตอม่อ	P2L-P2R	2.27
เสาตอม่อ	P3L-P3R	3.10
เสาตอม่อ	P4L-P4R	3.79
เสาตอม่อ	P5L-P5R	4.43
เสาตอม่อ	P6L-P6R	5.76
เสาตอม่อ	P7L-P7R	3.89
เสาตอม่อ	P8L-P8R	3.75
เสาตอม่อ	P9L-P9R	3.27
เสาตอม่อ	P10L-P10R	3.27
เสาตอม่อ	P11L-P11R	3.40
MA	APE	3.33

ตารางที่ 4.21 ตารางสรุปความคลาดเคลื่อนโครงสร้างสะพานแบบ RC

จากตารางที่ 4.36 การเปรียบเทียบความคลาดเคลื่อนของโครงสร้างสะพานแบบชนิดล่อใน ที่ตำแหน่ง P2L-P2R ถึง P11L-P11R สรุปได้ค่ากลางของเปอร์เซ็นต์ความคลาดเคลื่อนสัมบูรณ์ คือ 3.33 เปอร์เซ็นต์

รายการ	ตำแหน่ง	ค่ากลางคลาดเคลื่อน %
Standard Segment	P2L-P2R ถึง P11L-P11R	0.95
Deviatoe Segment D2a	P2L-P2R ถึง P11L-P11R	1.13
Deviatoe Segment D3a	P2L-P2R ถึง P11L-P11R	1.32
Pier Segment	P2L-P2R ถึง P11L-P11R	4.80
MAPE		2.05

ตารางที่ 4.22 ตารางสรุปความคลาดเคลื่อนโครงสร้างสะพานแบบ PC

จากตารางที่ 4.37 การเปรียบเทียบความคลาดเคลื่อนของโครงสร้างสะพานแบบชนิดล่อ สำเร็จรูป ที่ตำแหน่ง P2L-P2R ถึง P11L-P11R สรุปได้ค่ากลางของเปอร์เซ็นต์ความคลาดเคลื่อน สัมบูรณ์ คือ 2.05 เปอร์เซ็นต์

รูปที่ 4.18 แสดงโมเดลสามิติสะพานตำแหน่งที่ P2L-P2R ถึง P6L-P6R

จากรูปที่ 4.18 ผู้ศึกษาได้แสดงตัวอย่างการประกอบโครงสร้างสะพาน 3 มิติ โดยใช้ โปรแกรมสเก็ตอัพตำแหน่งที่ P2L-P2R ถึง P6L-P6R