ึการวิเคราะห์ผลกระทบของการชาร์จยานยนต์ไฟฟ้าที่เชื่อมต่อกับระบบจำหน่ายของการไฟฟ้าส่วนภูมิภาค

Impact Analysis of Electric Vehicle Charging Posing on

Provincial Electricity Authority Distribution Systems

ภูวดล ภูวงแหวน่อนันต์ จันเสนา่ภาคิน **ธนทวี่ภร**ชัย จูอนุวัฒนกูล ่และกษิเดช ทิพย์อมรวิวัฒน์

¹ภาควิชาวิศวกรรมไฟฟ้าและอิเล็กทรอนิกส์ประยุกต์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยศรีปทุม

puwadol.puw@pea.co.th, the anan@hotmail.com, than a tawee 997@gmail.com, parachai.ju@spu.ac.th, kasidej.ti@spu.ac.th, a tawee 100.000, the anan@hotmail.com, the anan@hotmail.

บทคัดย่อ

้ปัจจบันแนวโน้มการใช้งานยานยนต์ไฟฟ้าแทนรถยนต์ที่ใช้น้ำมัน หรือแก๊สได้รับความนิยมมากขึ้น เนื่องจากยานยนต์ไฟฟ้าสามารถช่วยลด ้มถภาวะต่าง ๆ และมีความเป็นมิตรต่อสิ่งแวดถ้อม ผลที่ตามมาคือทำให้มี ้ความต้องการใช้พลังงานไฟฟ้าสำหรับการชาร์จยานยนต์ไฟฟ้าเพิ่มขึ้น ซึ่งจะส่งผลต่อระบบจำหน่ายในเรื่องของระดับแรงคันไฟฟ้าของระบบ และการรับโหลดของหม้อแปลงไฟฟ้า บทความนี้เป็นการนำเสนอการ ้วิเคราะห์ผลกระทบของการชาร์จยานยนต์ไฟฟ้าที่เชื่อมต่อกับระบบ จำหน่าย โปรแกรม DIGSILENT PowerFactory ถูกใช้ในการจำลอง ระบบไฟฟ้าของหมู่บ้านแห่งหนึ่งในจังหวัดปทุมธานีในการวิเคราะห์ ผลกระทบของการชาร์จยานยนต์ไฟฟ้าโคยพิจารณาถึงระดับ แรงดันไฟฟ้า และการรับโหลดของหม้อแปลงไฟฟ้าเพื่อหาจำนวนยาน ยนต์ไฟฟ้าสูงสุดที่สามารถชาร์งได้ ผลของการจำลองพบว่าค่ากำลังไฟฟ้า รวมและค่ากระแสไฟฟ้าจะแปรตามจำนวนการชาร์จของยานยนต์ไฟฟ้า และระบบจำหน่ายในปัจจุบันนั้นสามารถรองรับการชาร์จยานยนต์ไฟฟ้า ใด้ 1 คันต่อหลังคาเรือน ซึ่งได้พิจารณาการชาร์จที่โหลดของหม้อแปลง ้ไม่เกิน 80% ในอีกความหมายหนึ่งคือหากเกิดเหตุการณ์ที่มีการชาร์จตาม ้ครัวเรือนเพิ่มขึ้นเพียงเล็กน้อย ระบบจำหน่ายก็ยังสามารถรองรับการ ชาร์จได้

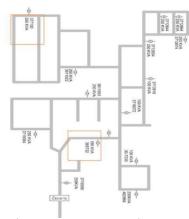
คำสำกัญ: ยานยนต์ไฟฟ้า การชาร์จยานยนต์ไฟฟ้า ระดับแรงดันไฟฟ้า การรับโหลดของหม้อแปลงไฟฟ้า

Abstract

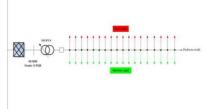
At present, the trend of using electric vehicles instead of cars using oil or gas is more popular. Because electric vehicles can help reduce pollution and are environmentally friendly. As a result, there is an increase in the demand for electric power for charging electric vehicles. This will affect the distribution system in terms of system voltage levels and transformer loading. This paper presents impact analysis of electric vehicle charging posing on distribution systems. The DIgSILENT PowerFactory program is used to simulate the electrical system of a village in Pathumthani Province to analyze the impact of electric vehicle charging by considering the voltage level and transformer loading, to find the maximum number of electric vehicles that can be charged. The simulation results show that the total electric power and current will vary with the amount of charging of electric vehicles and the existing distribution system can support the charging of 1 electric vehicle per household, which considers charging at the load of transformers not more than 80%. In other words, if a small increase in household charging occurs, the distribution system can still support the charging.

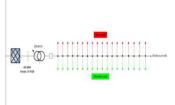
Keywords: Electric Vehicle, Charging Electric Vehicle, Voltage Level, Transformer Loading

1. คำนำ


้ ปัจจุบันทั่วโลกกำลังเริ่มเผชิญกับปัญหาทางด้านวิกฤติพลังงานและ การเปลี่ยนแปลงสภาพภูมิอากาศมากขึ้น [1] เนื่องจากมีการขยายตัว ทางด้านเศรษฐกิจและจำนวนประชากรที่เพิ่มสูงขึ้น โดยมากกว่าครึ่งมา จากการใช้เชื้อเพลิงกับยานพาหนะ จึงมีการพัฒนายานยนต์ไฟฟ้า (Electric Vehicle) [2] ขึ้น ซึ่งมีประสิทธิภาพสูงและลดการปล่อยก๊าซเสีย ในอากาศได้มากกว่าขานพาหนะที่ใช้เชื้อเพลิงเป็นน้ำมันในปัจจุบัน ดังนั้นแต่ละประเทศจึงเห็นความสำคัญของจุดนี้ได้ร่วมกันพัฒนาและ ผลักดันข้อกำหนดต่าง ๆขึ้น ซึ่งในประเทศไทยก็ได้กำเนิดสมาคมยาน ยนต์ไฟฟ้าไทยขึ้น เพื่อกำหนดนโยบายและทิศทางของเทคโนโลยี ้ดังกล่าว แน่นอนว่ายานยนต์ไฟฟ้านั้นจะต้องมาพร้อมกับอุปกรณ์ชาร์จ ไฟสำหรับแบตเตอรี่ที่ติดตั้งเป็นส่วนประกอบภายใน (EV Charger) ใน ปัจจุบันมีเริ่มมีการเพิ่มจำนวนสถานีชาร์จยานยนต์ไฟฟ้า (EV Charging Station) มากขึ้นเพื่อรองรับปริมาณรถไฟฟ้าที่เพิ่มสูงขึ้น การเพิ่มขึ้นของ ปริมาณยานยนต์ไฟฟ้าทำให้ต้องมีการพิจารณาผลกระทบกับระบบ ้จำหน่ายในเรื่องของระคับแรงคันไฟฟ้าของระบบและการรับโหลดของ หม้อแปลงใฟฟ้า [3] สำหรับประเทศไทยซึ่งยังอยู่ในระยะเตรียมความ พร้อมเพื่อรองรับการใช้งานยานยนต์ไฟฟ้า ประกอบกับข้อมูลทางสถิติ ของการใช้งานยานยนต์โคยทั่วไปยังมีอยู่ก่อนข้างจำกัด ดังนั้นข้อมูลทาง สถิติการใช้งานยานยนต์ไฟฟ้าที่จะนำมาศึกษาในบทความนี้ จะพิจารณา จากกรณีศึกษาของต่างประเทศ โดยพบว่าผู้ใช้ยานยนต์ไฟฟ้าส่วนใหญ่ นิยมอัดประจุไฟฟ้าที่บ้านพักอาศัยและเป็นที่คาดการณ์กันว่าผู้ใช้ไฟฟ้า จะเริ่มอัดประจุไฟฟ้าทันทีที่เดินทางกลับถึงบ้านซึ่งมักจะเป็นช่วงก่ำของ วัน ดังนั้นหากไม่มีมาตรการควบคุมการอัดประจุไฟฟ้าอย่างมี ประสิทธิภาพ ความต้องการใช้ไฟฟ้าจะมีก่าสูงขึ้นมากกกว่าปกติใน ช่วงเวลาก่ำ ซึ่งอาจส่งผลกระทบต่อระบบไฟฟ้า [4] ดังนั้นบทความนี้จึง มุงเน้นหาจำนวนยานยนต์ไฟฟ้าสูงสุดที่สามารถชาร์จได้โดยใช้ โปรแกรม DIgSILENT PowerFactory ในการจำลองระบบเพื่อวิเคราะห์ ผลกระทบของการชาร์จยานยนต์ไฟฟ้าที่เชื่อมกับระบบจำหน่าย โดย พิจารณาถึงระดับแรงคันไฟฟ้า และการรับโหลดของหม้อแปลงไฟฟ้า

2. สถานที่จริงและพารามิเตอร์ต่างๆ ของระบบ 2.1 สถานที่จริงของระบบ


หมู่บ้านที่ทำการศึกษาผลกระทบของการชาร์จยานยนต์ไฟฟ้า ดั้งอยู่ ถนนกรุงเทพ-ปทุมธานี ตำบลบางเดือ อำเภอเมืองปทุมธานี จังหวัด ปทุมธานี ดังแสดงในรูปที่ 1 และภาพจำลองหมู่บ้านดังแสดงในรูปที่ 2 ซึ่งหม้อแปลง 160 kVA และ 250 kVA เชื่อมต่อกับฟิดเดอร์ที่ 10 สถานี ไฟฟ้า ปทุมธานี (PQB) ซึ่งมีกำลังไฟฟ้า 40 MW ดังแสดงในรูปที่ 3 และรูปที่ 4 ดามลำดับ ส่วนข้อมูลการใช้พลังงานของบ้านแต่ละหลังสำหรับหม้อแปลง ขนาด 160 kVA มีผู้ใช้ไฟ 18 กรัวเรือน และ 250 kVA มีผู้ใช้ไฟ 30 กรัวเรือน


รูปที่ 1 สถานที่จริงของระบบ

รูปที่ 2 จำลองหม้อแปลงในหมู่บ้านชวนชื่น การ์เค้นวิวล์

รูปที่ 3 แสคงการจัควางระบบจำหน่ายของหม้อแปลง 160 kVA

รูปที่ 4 แสดงการจัควางระบบจำหน่ายของหม้อแปลง 250 kVA

ตารางที่ 1 แสดงข้อมูลการใช้ไฟฟ้าของบ้านแต่ละหลังของหม้อแปลง 160 kVA

	L	oad ID	P(kW)	Q(kVAR)	I(A)	U(V)
1	591	4087536	2.549	1.575	13.368	224.165
2	591	3367268	0.794	0.491	4.166	224.179
3	591	3367269	2.308	1.426	12.094	224.345
4	591	4140848	0.000	0.000	0.000	225.201
5	591	3367270	0.429	0.265	2.239	225.194
6	591	4413078	0.030	0.019	0.156	226.803
7	591	4530964	0.119	0.029	0.529	230.205
8	591	4688023	1.033	0.640	5.267	230.706
9	591	3366908	1.384	0.856	7.175	226.771
10	591	3367023	1.179	0.730	6.088	227.667
11	591	3367024	1.320	0.736	6.642	227.531
12	591	3367025	0.393	0.243	2.029	227.594
13	591	3367026	1.641	1.015	8.519	226.479
14	591	3367027	1.389	0.778	7.054	225.667
15	591	3367028	0.000	0.000	0.000	225.289
16	591	3367029	0.975	0.602	5.116	223.978
17	591	4249995	3.269	2.019	17.194	223.434
18	591	3367030	1.378	0.851	7.245	223.491

ตารางที่ 2 แสดงข้อมูลการใช้ไฟฟ้าของบ้านแต่ละหลังของหม้อแปลง 250 kVA

	Load ID	P(kW)	Q(kVAR)		U(V)
1	591_3367057	0.000	0.000	0.000	225.215
2	591_4939528	0.063	0.039	0.331	225.214
3	591_3646007	0.178	0.110	0.930	225.216
4	591_3367059	0.722	0.447	3.769	225.236
5	591_3367061	1.480	0.917	7.732	225,202
6	591_3367060	0.027	0.017	0.142	225.247
7	591_3367062	0.142	0.088	0.740	225.575
8	591 3367063	0.725	0.449	3.779	225.567
9	591_336788	2.019	1.201	10.420	225.432
10	591_336789	0.000	0.000	0.000	225,283
11	591_3367085	3.068	1.901	16.037	225.061
12	591_3367084	1.676	1.039	8.761	225.063
13	591 3367083	1.646	1.020	8.625	224.528
14	591 3367082	0.495	0.307	2.596	224.373
15	591_3367081	0.290	0.180	1.520	224.553
16	591_3367080	0.922	0.571	4.835	224.300
17	591_3367086	1.917	1.118	10.002	224.985
18	591_3367087	1.673	1.037	8.751	224.906
19	591 3367066	0.397	0.640	3.311	227.419
20	591_3367067	0.714	0.442	3,703	226.772
21	591_3367068	0.22	0.137	1.153	224.942
22	591_3364844	3.207	1.988	16.93	222.855
23	591_3367069	0.003	0.002	0.016	222.799
24	591_3367071	1.588	0.984	8.429	221.632
25	591 3349010	1.063	0.659	5.742	217.816
26	591_4762656	0.003	0.002	0.016	217.746
27	591_3349011	0.000	0.000	0.000	217.535
28	591_3850271	5.643	3.497	30.602	216.936
29	591 4977414	0.000	0.000	0.000	216.842
30	591_3348637	1.102	0.683	5.98	216.812

2.2 ค่าพารามิเตอร์ของระบบ

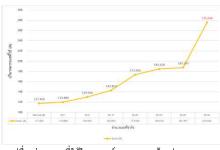
จากการบันทึกเมื่อวันที่ 30 กรกฎาคม พ.ศ. 2562 ระบบมีค่า กำลังไฟฟ้าสูงสุดในช่วงเวลา 20.00-21.00 น. ค่าพารามิเตอร์การใช้งาน จริงโดยวัดที่ด้านแรงต่ำของหม้อแปลง 160 kVA และ 250 kVA ดังแสดงใน ตารางที่ 3 และข้อมูลคุณลักษณะด้านไฟฟ้าของยานยนต์ FOMM ONE ดังแสดงในตารางที่ 4 และกราฟแสดงพฤติกรรมการชาร์จของยานยนต์ ไฟฟ้า ดังแสดงในรูปที่ 5

ตารางที่ 3 ค่าพารามิเตอร์ของหม้อแปลง 160kVA และ 250 kVA เวลา 20.00 – 21.00 น.

ด่าพารามิเตอร์	ขนาคหม้อแปลง							
	160 kVA	250 kVA						
%โหลด	50.800	61.300						
Psum (kw)	29.614	43.022						
Qsum (kw)	16.945	25.814						
I1 (A)	117.404	73.746						
U1 Phase (V)	229.422	229.294						
Ull Line (V)	397.371	397.149						

94

Battery capa	city			11.84 kWh 14 hp @ 170-800 rpm.						
Electric mot	or power									
Electric mot	or torque					560 N	m @ ()-170 r	rpm.	
System pow	er					14 hp				
Average En	ergy Con	sump	tion			6.76 k	:Wh/10	00 km		
Normal Cha	rge Cons	umpti	ion			2 kWl	h			
2.000										
(M) จรูยะบุผูญญาย์ 1.500 1.000 0.500										


ตารางที่ 4 ข้อมูลคุณลักษณะค้านไฟฟ้าของยานยนต์ FOMM ONE

รูปที่ 6 แสดง Single Line Diagram ระบบจำหน่ายแรงต่ำของหม้อแปลง 160 kVA

ฐปที่ 7 แสดงค่า P และ Q ที่ ใช้ ในการชาร์ จ EV ช่วงเวลา 20.00 – 21.00 น. ของหม้อแปลง 160 kVA

รูปที่ 8 ค่ากระแสที่ใช้ในการชาร์จ EV ของหม้อแปลง 160 kVA

รูปที่ 9 ค่าแรงคันเฟสที่ปลายสายที่ใช้ในการชาร์จ EV ของหม้อแปลง 160 kVA

ตารางที่ 5 แสดงค่าพารามิเตอร์ของระบบจากการชาร์จ EV ที่หม้อแปลง 160 kVA

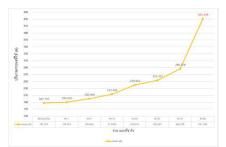
			0-21.00)									
	Normal Load		จำนวนรถชาร์จ (คัน)									
	Normat Load	1	5	10	20	24	25	56				
96โหลด	50.800	51.900	56.300	61.900	75.200	79,900	81.100	119,400				
Psum (kw)	29.614	31.611	39.601	49.588	69.975	78,001	80.008	142.313				
Qsum (kw)	16.945	16,906	16.728	16.449	17.974	17.998	18.004	18.280				
11 (A)	117.404	119.880	129.950	142.854	173.566	184.618	187.397	275.636				
U1 Phase (V)	229.422	229.422	229.421	229,422	229.562	229.239	229.233	228.995				
U1LLine (V)	397,371	397,370	397,369	397.371	397.049	397.054	397.044	396.632				

ตารางที่ 6 ค่าร้อยละการเปลี่ยนแปลงพารามิเตอร์ตามจำนวนการชาร์ง EV

ค่ารั	อยละการเป	ลี่ยนแปลงข	ของพารามิแ	ทอร์ของหม้อ	<mark>แปลง</mark> 160 ห่	VA
		ช่วงเวล	า 20.00-2	1.00 น.		
			จำนวนร	ถยนต์ที่ชาร์จ	3	
	1	5	10	20		25
%โหลด	2.165	10.827	21.850	48.031		59.646
Psum (kw)	6.743	33.724	67.448	136.290		170.170
Qsum (kw)	- 0.230	- 1.281	- 2.927	6.073		6.250
I1 (A)	2.109	10.686	21.677	47.837		59.617
U1 Phase (V)	-	- 0.000	-	0.061		- 0.082
U1l Line (V)	- 0.000	- 0.001	-	- 0.081		- 0.082


โดยค่าพารามิเตอร์ของระบบจากการชาร์จ EV ที่หม้อแปลง 160 kVA ในช่วงเวลา 20.00 – 21.00 น. แสดงในตารางที่ 5 ส่วนผลของ จำนวนการชาร์จ EV และเมื่อคิดเป็นก่าร้อยละการเปลี่ยนแปลงพารามิเตอร์ ตามจำนวนการชาร์จ EV แสดงในตารางที่ 6

จากตารางที่ 5-6 การเปลี่ยนแปลงของโหลดหม้อแปลง มีค่าเพิ่มขึ้น ดามจำนวนขานยนต์ที่ชาร์จ แต่ไม่เป็นเชิงเส้น พบว่าค่ากำลังไฟฟ้ารวม มีการเปลี่ยนแปลงเพิ่มใกล้เกียง 2 kW ต่ อรถ 1 กัน (1.997 – 2.29 kW) ก่ากระแสไฟฟ้ามีการเปลี่ยนแปลงเพิ่มขึ้นอยู่ระหว่าง 2.476 – 2.930 A ต่อ 1 กันต่อเฟส เมื่อพิจารณาการชาร์จที่โหลดของหม้อแปลงไม่เกิน 80% จะได้จำนวนยานยนต์ไฟฟ้าสูงสุดที่สามารถชาร์จได้คือ 24 กัน


จากการจำลองจาก Single Line Diagram ระบบจำหน่าขหม้อแปลง 250 kVA ดังแสดงในรูปที่ 10 สำหรับหม้อแปลง 250 kVA ผลของก่า P และ Q จากการชาร์จ EV ช่วงเวลา 20.00 -21.00 น. ดังแสดงในรูปที่ 11 โดยมี ก่ากระแสที่ใช้งานดังแสดงในรูปที่ 12 และก่าแรงดันเฟสที่ปลายสายดัง แสดงในรูปที่ 13

รูปที่ 10 แสดง Single Line Diagram ระบบจำหน่ายแรงต่ำของหม้อแปลง 250 kVA

รูปที่ 11 แสดงค่า P และ Q ที่ใช้ในการชาร์จ EV ช่วงเวลา 20.00–21.00 น.ของหม้อแปลง 250 kVA

รูปที่ 12 กราฟแสคงค่ากระแสที่ใช้ในการชาร์จยานยนต์ EV ของหม้อแปลง 250 kVA

รูปที่ 13 แสดงแรงคันเฟสที่ปลายสายที่ใช้ในการชาร์จ EV ของหม้อแปลง 250 kVA

ค่าพารามิเตอร์ของระบบจากการชาร์จ EV ของหม้อแปลงขนาด 250 kVA ในช่วงเวลา 20.00 – 21.00 น. แสดงในตารางที่ 7 และเมื่อกิดเป็นก่าร้อยละการเปลี่ยนแปลงพารามิเตอร์ตามจำนวนการชาร์จ EV แสดงในตารางที่ 8

ตารางที่ 7 แสดงค่าพารามิเตอร์ของระบบจากการชาร์จ EV ที่หม้อแปลง 250 kVA

	250kVA (20.00-21.00)											
	Normal Load	จำนวนรถชาร์จ (คัน)										
	Normal Load	1	5	10	20	25	37	88				
%โหลด	52.000	52.700	55.600	59.100	66.500	70.200	79.400	119,500				
Psum (kw)	43.037	45.039	53.049	63.063	83.099	93.121	117.185	219.635				
Qsum (kw)	25.874	25.876	25.888	25.906	25.951	25.979	26.059	26.596				
11 (A)	187.793	190.303	200.464	213.403	239.916	253.427	286.378	431.344				
U1 Phase (V)	229.459	229.457	229.450	229.440	229.416	229.403	229.366	229.139				
U1l Line (V)	397,435	397.432	397.419	397.401	397.361	397.337	397.274	396,880				

ตารางที่ 8 ผลของจำนวนการชาร์จ EV ทำให้มีค่าพารามิเตอร์ต่าง ๆเปลี่ยนไป

		ค่าร้อยส	az I	การเปลี่ยน	IUN	ไลงของพ	15	ามิเตอร์ขอ	1414	ม้อแปลง 2	50	kVA	
					ช่ว	งเวลา 20	0.0	0-21.00 1	ł.				
						Ś	่าง	เวนรถยนต	ที่จ	กร์จ			
		1		5		10		20		25		37	
96โหลด		1.346		6.923		13.654		27.885		35.000		52.692	
Psum (kw)		4.652		23.264		46.532		93.087		116.374		172.289	
Qsum (kw)		0.008		0.054		0.124		0.298		0.406		0.715	
11 (A)		1.337		6.747		13.637		27.756		34.950		52.497	
U1 Phase (V)	-	0.001	-	0.004	-	0.008	-	0.019	-	0.024	-	0.041	
U1l Line (V)	1	0.001	-	0.004	-	0.009	-	0.019	-	0.025	20	0.041	- 0.140

จากตารางที่ 7-8 การเปลี่ยนแปลงของโหลดหม้อแปลง มีค่าเพิ่มขึ้น ตามจำนวนยานยนต์ที่ชาร์จ พบว่าค่าการเปลี่ยนแปลงอยู่ที่ร้อยละ 1.3 – 1.4 ต่อยานยนต์ 1 กัน ก่ากำลังไฟฟ้ารวมมีการเพิ่มขั้นประมาณ 2 kW ต่อ รถ 1 กัน ก่ากระแสไฟฟ้ามีการเปลี่ยนแปลงเพิ่มขึ้นอยู่ระหว่าง 2.490 – 2.767 A ต่อ 1 กันต่อเฟส เมื่อพิจารณาการชาร์จที่โหลดของหม้อแปลงไม่ เกิน 80% จะได้จำนวนยานยนต์ไฟฟ้าสูงสุดที่สามารถชาร์จได้คือ 37 กัน

5. สรุป

- ที่หม้อแปลง 160 kVA เวลาการชาร์จ 20.00 – 21.00 น. เมื่อ พิจารฉาการชาร์จที่โหลดของหม้อแปลงไม่เกิน 80% และระดับแรงดัน ±10% จะได้จำนวนยานยนต์ไฟฟ้าสูงสุดที่สามารถชาร์จได้คือ 24 กัน มี กำพารามิเตอร์ดังนี้ กำลังไฟฟ้ารวม 78.001 kW โดยเปอร์เซ็นต์โหลดของ หม้อแปลงอยู่ที่ร้อยละ 79.900 ค่ากระแสไฟฟ้ารวม 184.618 A

- ที่หม้อแปลง 250 kVA เวลาการชาร์จ 20.00 – 21.00 น. เมื่อ พิจารณาการชาร์จที่โหลดของหม้อแปลงไม่เกิน 80% จะได้จำนวนยาน ยนต์ไฟฟ้าสูงสุดที่สามารถชาร์จได้คือ 37 กัน มีก่าพารามิเตอร์ดังนี้ กำลังไฟฟ้ารวม 117.185 kW โดยเปอร์เซ็นต์โหลดของหม้อแปลงอยู่ที่ ร้อยละ 79.400 ก่ากระแสรวม 286.378 A

จากการทดลองพบว่าค่ากำลังไฟฟ้ารวมและค่ากระแสไฟฟ้า หลังจากที่มีการชาร์จยานยนต์ไฟฟ้ามีก่าเพิ่มขึ้นตามจำนวนของยานยนต์ ไฟฟ้าที่ชาร์จ และพบว่าก่าแรงคันไฟฟ้าที่ได้จากค้านแรงต่ำของหม้อมีก่า แรงคันตกเพียงเล็กน้อยทั้งหม้อแปลง 160kVA และ 250 kVA แต่หม้อ แปลงขนาด 250 kVA ในสถานที่จริงได้ใช้สายของระบบจำหน่ายด้าน แรงต่ำขนาด 95 ตร.มม. ซึ่งมีขนาดของสายเล็กกว่าที่ใช้กับหม้อแปลง ขนาด 160 kVA (ขนาด 185 ตร.มม.) ทำให้กระแสที่เกิดขึ้นจากการชาร์จ ถูกจำกัดด้วยขนาดสายไฟของระบบจำหน่ายด้านแรงต่ำ ซึ่งหากปรับ ขนาดของสายด้านแรงค่ำให้มีขนาดใหญ่ขึ้นจะทำให้รองรับปริมาณรถที่ สามารถชาร์จได้มากขึ้น

จะเห็นได้ว่าการออกแบบระบบจำหน่ายของหมู่บ้านการ์เด้นวิลล์ นั้นควรออกแบบขนาดหม้อแปลงและขนาดสายให้มีความสัมพันธ์กับ จำนวนบ้านอยู่อาสัยเพื่อรองรับปริมาณการชาร์จรถยนต์ไฟฟ้าในอนาคต กระนั้นก็ตามระบบจำหน่ายในปัจจุบันนั้นสามารถรองรับการชาร์จ รถยนต์ไฟฟ้าได้ 1 คันต่อหลังกาเรือนภายในหมู่บ้านตามผลการทดลอง นั่นคือ บ้านละ 1 คันนั่นเอง แต่กระนั้นก็ตามผู้จัดทำได้พิจารณาการชาร์จ ที่โหลดของหม้อแปลงไม่เกิน 80% อย่างไรก็ตามหากใช้ยานยนต์ยี่ห้ออื่น เช่น Tesla หรือ Nissan ที่ต้องการกำลังไฟฟ้าในการชาร์จเพิ่มขึ้น จะทำ ให้จำนวนรถยนต์ที่ทำการชาร์จลดลง

6. กิตติกรรมประกาศ

ขอขอบคุณการไฟฟ้าส่วนภูมิภาค ในการสนับสนุนข้อมูลผู้ใช้ไฟและ การใช้โปรแกรม DigSilent Power Factory

7. เอกสารอ้างอิง

 [1] สำนักงานปลัดกระทรวงพลังงาน "ประเภทของขานขนต์ไฟฟ้า" 2560,
(ออนไลน์), สืบค้นเมื่อ 14 กรกฎาคม 2562,จาก https://gnews.apps.go.th/ news?news=6806

[2] นิสสัน, "ทำความรู้จักกับรถยนต์พลังงานไฟฟ้า100%", (ออนไลน์), สืบค้นเมื่อ 15 กรกฎาคม 2562, จาก https://www.nissan.co.th/experiencenissan/Nissan-EV/how-EV-work.html

 [3] มหาวิทขาลัยเกษตรศาสตร์, "การศึกษาผลกระทบของรถยนต์ไฟฟ้า แบบปลั๊กอิน (PEV) ต่อระบบส่งไฟฟ้า (V2G)", (ออนไลน์), สืบค้นเมื่อ
18 กรกฎาคม 2562, จาก www.research.eng.ku.ac.th

[4] คณะพลังงานสิ่งแวดล้อมและวัสดุ มหาวิทยาลัยเทคโนโลยีพระจอม เกล้าธนบุรี, "การศึกษาการพัฒนาของเทคโนโลยียานยนต์ไฟฟ้าและผลกระทบ ที่เกิดขึ้นสำหรับประเทศไทย", (ออนไลน์), สืบค้นเมื่อ 20 กรกฎาคม 2562, จาก energyforum.kmutt.ac.th